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The issue of research

Biharmonic vibrations are in demand in different 

technological processes:

– transportation,

– screening,

– compacting and so on [1, 2].

Usually such vibrations are formed with the help of 

biharmonic exciters. Examples of such machines are 

shown in the figure 1.
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Figure 1. Samples of biharmonic vibrating machines



The issue of research

This work continues traditions of 80-ies of the last century 

[3, 4] and is devoted to the creation of nonlinear vibrating 

machines. At that time one of the most popular approach 

for the forming of nonlinear elastic ties was the use of 

buffer elements and, as a result, its characteristic became 

of the piecewise-linear form. But appearance of 

neodymium magnets (sintered NdFeB) (fig. 2) on the 

market today that are more powerful than any other 

permanent magnet material [5, 6] discovers new 

opportunities in this direction.
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On the basis of such magnets the principal scheme and 

device (fig. 3) for forming of nonlinear elastic ties are 

proposed.

11th International Conference on Vibration Problems
ICoVP 2013, September 9-12, 2013, Lisbon, Portugal

Figure 2. Samples of neodymium magnets
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Figure 3. Magnetic elastic element: a) A scheme and 
sample: 1 – body; 2 – support; 3 – trunnion; 4 – rubber 
element; 5, 6 – magnets; 7 – adjusting bolt; b) View of 
elastic characteristics for different initial gaps δ
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The issue of research

For the indicated values of initial gaps between the 

magnets it has the following elastic characteristics

and

Combining such elements with different values of gaps δ 

and, perhaps, a certain number of normal linear absorbers 

one may try to form the desired elastic system of vibrating 

machine. Our purpose here is to get some instructions for 

choosing elastic parameters of such machines.

07

F=887.12 (1−0.96 ξ+0.42 ξ2
) ξ  N/m  for δ=4  mm, where [ξ ]=mm.

F=943.72 (1−2.95 ξ+ 4.60 ξ2
) ξ  N/mm  for δ=1  mm



The model under consideration
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For this purpose it is considered the vibrating two-masses 
machine (screen, filtering centrifuge, concentration table) with 
ideal harmonic inertial excitation and polynomial characteristic 
of the elastic ties (fig. 4).
Figure 4. Principal scheme of the vibrating machine



In dimensionless form equations of its motion may be 
represented in the form
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Here m1  is mass of a frame, m2  – of a box, m0  – of

unbalance masses, characteristics of the main and

supported elastic ties are f m (x)=k1 x+k 2 x2
+k3 x3  and 

f s (x)=k 01 x+k02 x2
+k 03 x3  correspondently, resistance

forces are f r.m. (x)=μ (k1
'
+k 2

' x+ k3
' x2

) ẋ  and 

f s.m. (x)=μ (k01
'
+k 02

' x+ k03
' x2

) ẋ , ω  – rotation speed of

the exciter, r  is its eccentricity.
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Taking in mind here experimental machine physical values of some
parameters were taken as follows m1=98  kg, m0=2  kg, m2=45  kg, 

k 01=2.4⋅104  N/m, k1=0.6⋅106  N/m, m0⋅r=(0.05−0.5)kg⋅m then

ω1=12.8  rad⋅sec−1 . Presumable ranges of the others are k 2∈[−2, 0 ]⋅103⋅k 1 ,

k 3∈[0, 3 ]⋅106⋅k 1 , where k 2  and k 3  characterize the level of asymmetry and

nonlinearity of the main elastic ties. The similar correlations were taken
for parameters k 02 , k 03  of the supported elastic ties. Angular velocity of

the exciter ω  is supposed to be variable, parameters k i
'  and k0i

'  of the

resistance forces are dependent on the design of elastic ties, coefficient

of dissipation in material of elastic ties is equal to μ=8⋅10−4  sec. Keeping

in mind the elastic ties of magnetic type we suppose k i
'=k 0i

' =0 . Then the

dimensionless values of the parameters are b101=0.015 , b102=b103=0 ,

b11=−0.375 , b12=b13=0 , k 101=1.465 , k 102=k103=0 , k11=−36.621 ,

k 12 /k11∈[−2, 0 ] , k13 /k11∈[0, 3 ] , P1∈[0.5, 5.0 ] , b201=−b101 , b202=b203=0 ,

b21=1.208 , b22=b23=0 , k201=−k101 , k202=k 203=0 , k21=118.001 , k22 /k 21=k 12 /k11 ,

k 23 /k 21=k 13 /k 11 , P2=−P1 .
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Analysis of the model is performed with the help of original software 

which was worked out as a tool of program MATLAB. Searching of the 

bifurcation diagrams in it is based on the harmonic balance method. 

Stability of the motions by the first approximation is investigated with 

use of Floquet-Lyapunov theory. Stationary solutions of the system are 

found in the form of finite Fourier expansions

where N  is a number of harmonics taken into consideration. Supposing the

trigonometric view of the solutions in the form ∑
j=0

N

A j cos( j ητ−ϕ j) , where

ϕ j∈[−π ,π ) , you can get the expressions for the amplitudes of the harmonic

components A j  and its initial phases ϕ j  as A j=2√c j c− j  and

ϕ j=arccos
c j+c− j

2√c j c− j

 or ϕ j=−arccos
c j+c− j

2√c j c− j

, if (ℑc− j=0∧ℜc− j<0)∨ℑc− j<0.

(2)
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After substitution expressions (2) into the differential 

equations (1) and equating the coefficients of equal 

powers the polynomial system for determination of 

expansion coefficients is produced
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where n ,n− j , n− j−m ∈ [−N , N ].
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Changing step by step one of the parameters of the model 

and solving algebraic system of equations (3) with respect 

to      one can find spectral         and phase         structure, 

laws of motion or acceleration and construct the 

bifurcation curves of the system.
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Taking in mind the vibration machines of the 

«antiresonance» type [7] we consider the motion of the 

model in the frequency zones located between the natural 

ones. In the figure 5 below amplitude- (AFC) and 

phase-frequency characteristic (PFC) of corresponding 

linear system are presented.
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Figure 5. AFC and PFC for linear system
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Using the featured ratio p ω ≈ | p1 | ω1 + | p2 | ω2 [8] 

between the excitation frequency and natural ones, where 

p, p1, p2 ∈ ℤ we considered only pure resonances of lower 

orders (ω ≈ p1 ω1, where p1 = 2, 3 and p ω ≈ p2 ω2, where 

p = 2, 3, p2 = 1 and p = 1, p2 = 2, 3). Changing 

parameters and initial conditions the resonances of orders 

3:1, 2:1 and 1:3 were discovered in this frequency zone 

(fig. 6-8).
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Figure 6. Resonance 3:1, k13 / k11 = 1
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Figure 7. Resonance 2:1, k13 / k11 = 1
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Figure 8. Resonance 1:3, k13 / k11 = 1
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In our opinion, the most interesting of it, from the practical 

point of view, is the resonance of the order 2:1, – it is 

rather intensive and gives an opportunity to form 

practically suitable biharmonic oscillations. But one of the 

serious drawbacks of it consists of existence opposite 

regimes for one frequency of excitation (fig. 7).
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Considering the domain of the parameters P1∈[0.5, 5.0 ] , k3/ k1∈[0.5, 3.0] ,

k2 /k 1∈[0.0,−2.0]  investigation of the effect of each of these parameters upon

the behaviour of the machine was studied. The results are presented in
figures 9-11, where AFC, PFC and diagrams of acceleration of the box are

given. Coefficient of asymmetry A s=μ3 /σ
3  of the periodic signal x ( t)  is

determined here as the ratio of the third central moment to the third power

of standard deviation, where μ3=(∫
0

T

( x ( t)−m)3 dt )/T , σ 2
=(∫

0

T

( x (t )−m)2 dt )/T ,

m=∫
0

T

x (t )dt /T . Their analysis says that for some parameters, for example, on

the ascending branch of the AFC (fig. 9b) or for certain asymmetry of elastic
characteristics (fig. 11c) the superharmonic regimes may be globally stable.
This fact is important for practice and conditions are found on the
parameters of vibrating machines

k1=(10÷50) k01 , 0.5<
m0 r

(m0+m1)Δ
<1.5 , 

k2 Δ

k1

⋅
m1

m0+m1

≈−2 , 
k3 Δ

2

k1

≈3 ,

which ensure such stability. Asymmetry of accelerations may reach the
value ∣A s∣=1.5  (fig. 10c) and even more while its value for recommended

biharmonic motions [2] is ∣A s∣=0.38−0.76 .
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Figure 9. The effect of the external force for
k2 / k1 = -1.0, k3 / k1 = 1.5
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Figure 9. The effect of the external force for
k2 / k1 = -1.0, k3 / k1 = 1.5
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Figure 9. The effect of the external force for
k2 / k1 = -1.0, k3 / k1 = 1.5
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Figure 10. The effect of the nonlinearity of elastic ties for
P1 = 2.5, k2 / k1 = -1
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Figure 10. The effect of the nonlinearity of elastic ties for
P1 = 2.5, k2 / k1 = -1
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Figure 10. The effect of the nonlinearity of elastic ties for
P1 = 2.5, k2 / k1 = -1
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Figure 11. The effect of the asymmetry of elastic ties for
P1 = 2.5, k3 / k1 = 1.5
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Figure 11. The effect of the asymmetry of elastic ties for
P1 = 2.5, k3 / k1 = 1.5
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Figure 11. The effect of the asymmetry of elastic ties for
P1 = 2.5, k3 / k1 = 1.5



Conclusions

1. The principal scheme of the device of elastic ties of 

magnetic type was proposed. For different values of 

gaps its elastic characteristic was determined.

2. Dynamics of two-masses vibrating machine with 

polynomial characteristic of elastic ties was 

investigated in «antiresonance» zone. The possibility of 

excitation of resonances 3:1, 2:1, 1:3 was discovered.

3. The effect of parameters upon the behavior of vibrating 

machine was studied, the possibility of global stability 

of 2:1 regimes was mentioned.
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