АВТОМАТИЗАЦИЯ ПРОЕКТИРОВАНИЯ АВТОМАТОВ МУРА С ПРЕОБРАЗОВАНИЕМ КОДОВ ОБЪЕКТОВ

Боровлев А.С., <u>Баркалов А.А.</u> Донецкий национальный технический университет

Введение в цифровые автоматы

Принцип микропрограммного управления впервые был предложен М. Уилксом в 1951 г. и допускает присутствие в любой цифровой схеме устройство управления (УУ), которое координирует все блоки системы и операционное устройство (ОУ), которое выполняет обработку данных [1]. Алгоритм работы системы задается одним из формальных методов. В инженерной практике чаще всего применяется «язык» графсхем (ГСА).

Структура цифрового устройства приведена на рис. 1.

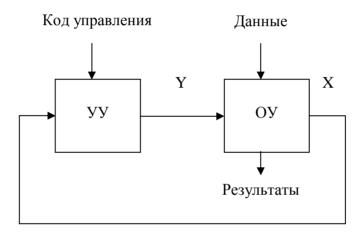


Рисунок 1. Стурктурная схема цифрового устройства

Алгоритм управления системы задается кодом управления, который поступает в УУ из внешней среды. Алгоритм управления ОУ называется *микропрограммой*.

1. Общая структура управляющего устройства

В связи с тем, что УУ представляет собой «черный ящик» на вход которого подаются логические условия (вектор -X), а на выходе получают управляющий сигнал (вектор Y), то работу такого устройства можно представить, как:

$$\begin{cases}
Y = F_1(X, T_i) \\
T_{i+1} = F_2(X, T_i),
\end{cases}$$
(1)

где Y – управляющие сигналы, X – логические условия, T_i – текущее состояние устройства, T_{i+1} – следующее состояние устройства.

2. Устройство Мура

Данное устройство работает по следующей формуле:

$$\begin{cases} Y = F_1(T_i) \\ T_{i+1} = F_2(X, T_i). \end{cases}$$
 (2)

Как видно, вектор выходных переменных Y зависит только от текущего состояния автомата. Таким образом, это приводит к тому, что мы отличаем переходы автомата от формирования выходных функций. Это приводит к уменьшению формул формирования выходных сигналов, но в большинстве случаев увеличивает количество состояний автомата, что приводит к увеличению элементов памяти и формул перехода. Поэтому, классический автомат Мура не используется.

3. Синтез логической схемы микропрограммного автомата Мура с преобразованием кодов объектов

Пусть автомат Мура S_3 задан ПСТ (табл. 3.1), которая имеет M=7 состояний, L = 4 логических условия, N = 4 микрооперации и H = 15 строк.

Таблица 1

			Прямая структурная таблица автомата Мура S_3				
		Прямая					
$\mathbf{a}_{\mathbf{m}}$	$K(a_m)$	\mathbf{a}_{s}	$\mathbf{K}(\mathbf{a}_{\mathbf{s}})$	$\mathbf{X_h}$	$\Phi_{ m h}$	h	
a ₁ ()	000	\mathbf{a}_2	001	\mathbf{x}_1	D_3	1	
		a_3	010	$\overline{\mathbf{x}} * \mathbf{x}_2$	D_2	2	
		a_4	011	$\overline{\mathbf{x}} * \overline{\mathbf{x}_2}$	D_2D_3	3	
a_2	001	a_5	100	X 3	\mathbf{D}_1	4	
(y_1, y_2)	001	a_6	101	$\overline{\mathbf{x}_3}$	D_1D_3	5	
\mathbf{a}_3	010	a_5	100	\mathbf{x}_3	\mathbf{D}_1	6	
(y_3)		a_6	101	$\overline{\mathbf{x}_3}$	D_1D_3	7	
a_4	011	a_5	100	\mathbf{x}_3	\mathbf{D}_1	8	
(y_3)		a_6	101	$\overline{\mathbf{x}_3}$	D_1D_3	9	
a_5	100	a_7	110	<u>X4</u>	D_1D_2	10	
(y_3, y_4)		a_1	000	$\overline{\mathbf{x}_4}$		11	
a_6	101	a_7	110	X 4	D_1D_2	12	
(y_1, y_2)		a_1	000	$\overline{\mathbf{x}_4}$		13	
a_7	110	a_5	100	\mathbf{x}_3	D_1	14	
(y_3, y_4)		a_6	101	$\overline{\mathbf{x}_3}$	D_1D_3	15	

Используем автомат S_3 для иллюстрации предлагаемых методов синтеза. На рис. 2 представлена структурная схема PC_AY автомата Мура.

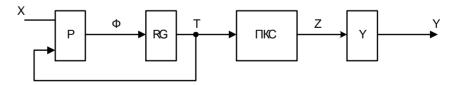


Рис. 2. Структурная схема РС_АУ – автомата Мура

Литература

- [1] Угрюмов Е.П. Цифровая схемотехника Сб.: БХВ Петербург, 2000, 4с.
- [2] Баркалов А. А. "Синтез устройств управления на программируемых логических устройствах" Донецк: ДонНТУ, 2002, 151с.