: i TouHTY
Hayxogi npatti Jlo Bumyck 74

GRAPH-BASED GP APPROACH TO
MICROPROCESSOR SYSTEM TESTING

: ; Ermolenko M.L.
Institute of Applied Mathematics & Mechanics NANU, Donetsk, Ukraine
E-mail: marker@court.gov.il

Abstract

Ermolenko M.L. Graph-based GP approach to microprocessor system festing. Testing of
microprocessor system is a critical issue not only because of their complexity, but also because of their
specific characteristics to intensify all difficulties . Functional testing is an effective solution which
consists in suitable test program executing by microprocessor. This paper pfesenrs an approach to
aulomatic test program generation and implementation exploiting an genetic programming techniques

based on the test program representation as direct graph . It overcomes the main limitation of previous
techniques and provides significantly better results.

Epmonenko MJI. Ilodxo0 k mecmuposanuioc MuKponpoueccopHsix cucmem, oCHOBTHHBIE Ha
2EHEMUNECKOM NPOZPAMMUPOSAHUL, 20€ NPOZPAMME RPEOCMAGIAEMCA 6 6Ude OPUEHMIUPOCANHO20
Zpagpa. Tecmuposanue MUKpORPOYECCOPHBIX CUCMEM AGNAEMCS cepbesnoti npobiemoii He MonbKo
U3 3G uX CNOJCHOCMY, HO MAKJICe u3-3a CHeyU(PUYECKUX c60LCME IMUX CUCMEM, KOMOpble
OCTONCHAIOM npoyecc mecmuposanus. Pynkyuonanbnoe mecmuposanue sensemcs dgexmusnsim
MemoOoM OUAZHOCMUKY, KOMOpPWI OCHO6AH HA BbLINONHEHUU Mecm-npozpammsl Ha accembiepe. B
cmamve npedcmaened NOOX00 K GBMOMAMUYECKOU 2ZeHepayuy Mecm-npozpamm, OCHOBAHHBI Ha
2EHEMUYECKOM NPOZPAMMUPOGANUY, 20€ NPOZPAMMA NPEOCMABNAemMcs 6 GuUde OPUEHMUPOBAHHO20
zpaga. Imom nodxed nozeonsem npeodoNeMb MHO2UE O2PAHUYEHUS NPeobOVUUX Memodo8 u
NOAYHUMb CYUJECMEERHO TYYULUE PEIYTBIMAMDI,

1. Introduction to Graph GP

In this chapter a graph-based representation of GP programs will be introduced. It provides the
flexibility to choose different execution paths for different inputs and to create programs with more
higher complexity.

The program flow of a graph program is more natural than linear or tree GP-programs and
similar to program flow of hand written programs.

In graph-based GP each program p is represented by a direct graph of Np nodes. Each node can
have up to Np outgoing edges. Each node in the program have two parts , sequential branch and
conditional branch. The sequential branch part is either a constant or a function which will be
executed when the node is reached during the interpretation of the program. After the sequential
branch of a node is executed an outgoing edge is selected according to the conditional branch. This
decision is made by a conditional function which determines the edge to the next nuda_.

Each program has two special nodes , a start and a stop node. The start node is always the first
node to be executed when the interpretation of the program begins. After the sfop node is reached ,its
sequential branch is executed and the program halts. Since the graph structure inherently allows loops
and recursion , it is possible that the stop node is never reached during the interpretation. In order to

249

Hayxosi npaui JlonHTY Bumyck 74

avoid that a program runs forever it is terminated after a certain ﬁﬂm_ﬂneshuld is reached. The
threshold can be implemented as a fixed maximum number of nodes which can be executed during
interpretation.

1.1 Recombination of Graph-based program

A crossover operator combines the genetic material from two parent programs N
by swapping certain program parts. The crossover for a graph based program can be_. realized in many
ways. The first way is to perform the crossover by exchanging sub-graphs, it is similar to exchanging
sub-trees in tree-based GP.

/' L
’_L i] | |!__*‘D’(f;'* D Sequential branch

() Conditional branch
adge
Ii.ﬂ:hhﬂ ;‘i;ﬂ'ﬁ AZ=AT%3 ’hﬂ-‘-ﬁlfi! > Edge to child

Fig. 1: The structure of a node in a graph-based GP program (top) and an example
Node (bottom)

The basic crossover operator of graph-base GP, which called Sub-graph crossover(SGC), is a
generalization to graphs of the crossover used in GP to recombine trees. SGC crossover works as
follows: 1) a random node is selected in each parent (crossover point); 2) a sub-graph including all the
nodes which are used to compute the output value of the crossover point in every parent is extracted; 3)
the sub-graph of the firs parent is inserted in the second parent to generate the offspring 4) the sub-
graph of the second parent is inserted in the first parent to generate the offspring. An example of
SGC crossover is shown in Figure 2. Obviously, for SGC crossover to work properly some care has to
be taken to ensure that the depth of the sub-graph being inserted in the first or second parent is
compatible with the maximum allowed depth. A simple way to do this is to select one of the two
crossover points at random and choose the other with the coordinates of the first crossover point and
the depth of the sub-graph in mind or if the depth of the sub-graph is too big for it to be copied into the
second parent, the lowest nodes of the sub-graph are pruned to make it fit .

The idea behind this form of crossover is that connected sub-graphs are functional units whose
output is used by other functional units. Therefore, by replacing a sub-graph with another sub-graph,
we tend to explore different ways of combining the functional units discovered during evolution.

1.2 Mutation

The difference between crossover and mutation is that mutation operates on a single program
only. After applying crossover operator to the population a program is chosen with a given probability
for mutation. The random mutation operator select a subset of nodes randomly and change either &

250

R pe) [IEELTY Bunyck 74

node of a linear program, a branching function , or the number of outgoing ed . The al
is then placed into the population. ot A B o

Crossaver Paint

Crassover Palat

; Selactsd Bub-graph

Balected Sub-graph

offspring 1

Offspring 2
[ET e
Crassovar E 3 -___'—{_;_}‘____ g
R Fel g Ao P

Fig. 2: Sub-graph crossover (SGC).

2. Programmatically representation of graph-based GP system
The graph-based GP system are capable of representing very complex program structures
compactly. Figure 3 is a diagram of a small graph-based program.
Each program has a stack and an indexed memory for its own use of intermediate values and for
communication. There are also the following special nodes in the program:
e Start node
e Stop node
e Subprogram calling nodes
¢ Library subprogram calling nodes
There are also parameters stating, for example, the minimum and the maximum time for a program to
run.
Execution begins in the Start node. When the system hits the End node or another preset condition,
execution is over. Thus, the flow of execution is determined by the edges in the graph. If a particular
program stops earlier, it is simply restarted from the start node, which values accumulated in stack or
memory reused. Library subprograms are available to all nodes, not just the one which is calling,
whereas subprograms without that provision are for program’s “private™ use only.
Library subprogram calling nodes Execution begins in the Start node. When the system hits the End
node or another preset condition, execution is over. Thus, the flow of execution is determined by the
edges in the graph.

251

Hayxogi npaui lonHTY Bumyck 74

Like all GP system ,graph-based GP system needs memory to give its nodes the data upon which to
operate. Here, data is transferred among nodes by means of a stack. Each of the nodes executes a
function that reads from and/or writes to the stack. For example, the node 4 in Figure 3 reads the value
of the input 4 from RAM and pushes it onto the stack. The node B pushes its value onto the stack. The
node Plus pops two values from the stack, adds them, and pushes the result onto the stack. Thus the
system has localized memory.

Data may also be saved by graph-based GP in indexed memory. The node labeled Write pops two
arguments from the stack. It writes the value of the first argument into the indexed memory location
indicated by the second argument. The Read fetches data from the memory location. The indexed
memory is global memory.

Note that there are really two things that each node must do: it must perform some function on the
stack and/or the indexed memory, and it must decide which node will be the next to execute. This letter
function is really a matter of choosing between the outgoing edges from the node. For example on the
Figure 3. The Plus node may transfer control to Write, Read or C . For this purpose each node has a
branch-decision function which determines, depending on the stack, memory cells, constants, or the
foregoing node, which of the edges to take.

3. Test program generation
In this chapter will be proposed an methodology for automatic generation a test program able to
attain high fault coverage figures, which based on the graph-based GP approach.

The overall architecture of the proposed approach is followed .The code generator induces test
programs exploiting an external subprogram library that consist of microprocessor assemble operators
and subprograms. The code generator exploit a fault simulator to evaluate the generated test programs
and to gathered relevant information for driving the optimization process.

Test program generation exploits the methodology of inducing assembly programs for
microprocessors cores to reach a specific goal. It utilizes a program representation as directed graph for
representing the syntactical flow of a program, and an subprogram library for describing the assembly instructions
and subprograms.

3.1 Program representation

Each node of the directed graph (Figure 4) contains a pointer inside the subprogram library. The
instruction library describes the assembly syntax, listing the possible operators and subprograms with
the syntactically correct operands. The directed graph are built according to the following rules:

o Start and End nodes are always present in the graph-based program representation. The Start
has no parent node, while the End has no children. These nodes may never be removed
from the program, nor changed.

» Sequential-branch nodes represent common operations, such as arithmetic or logic
ones (e.g., node B). They have out-degree 1 and the number of parameters changes from
instruction to instruction.

 Conditional-branch nodes are translated to assembly-level conditional-branch
instructions (e.g., node A). All common assembly languages implement some jump-if-
condition mechanisms. All conditional branches implemented in the target assembly
languages must be included in the library.

3.2 Program Implementation
Test programs are implemented by modifying directed graph topology and by mutation

252

Hayxosi npaui JlosHTY

Bumyck 74
1{151&5 directed graph nodes. Both kinds of modification are embedded in an evolutionary
algorithm using a (u+A) strategy.
Main Program
; AL
| St . lbrary
ADD
T ADOC
Y i
3 .
] AR
12 sl R)
7 |'.l .I\ I'- z"r
Z | B A4 o
B : |\ 4 l:I"rhl‘:'lz
b e .l'lr 8
| Y R s
Y I pri e
] ! e i
= i I JNZ
i ; Z
II. l!' ""---._.'p; LW
ki ! | MV
| | RE}--\ { | o |
; | 1 MO
[I ML !
bl ' NOP ?
N S|
', *-:- " PGF l}
5 b g R |
< J Rty RLC !
(Hf——. ! AR |
| T, ! FRE i
| Sl b ETE d
| S0P |
En F.f i BuBlL |

Subprogram (private or publick)
Fig. 3:The representation of a Fig. 4: Directed Graph and
program and subprogram Subprogram Library

In more details , a population of p individuals is cultivated, each individual representing a test

program. In each step , an offspring of A new individuals are generated. Parent are selected using
tournament selection with tournament size t

(i.e., T individuals are randomly selected and the best is picked). Each new individuals is

generated by applying genetic operators. After creation new A individuals, the best p programs in the
population of (p+X) are selected for surviving.

The evolution process iterates until the population reaches a steady state condition

Three mutation and crossover operators are implemented and applied with probability respectively.

L

Add node: a new node is inserted into the directed graph in a random position. The new node
can be either a sequential branch or a conditional branch. In both cases , the instruction referred
by the node is randomly chosen. If the inserted node is a branch, ether unconditional or
conditional, one of the subsequent nodes is randomly chosen as the destination. Remarkable,
when an unconditional branch is inserted, some nodes in the direcfed graph may become
unreachable.

Remove node: an existing internal node (except sfarf or end) 1s removed from the directed
graph . If the removed node was the target of one or more branch, parents’ edges are updated.

» Modify node: all parameters of an existing internal node are randomly changed:
e Crossover: two different programs are mated to generated a new one. First, parents are

253

Hayxogi npani JlonHTY Bunyck 74

analyzed to detect potential cutting points, i.e., vertices in the direcffid graph that'if remn?ed
create disjoint sub-graphs (e.g., node C in Figure 4). Then a SAG 1-point crossover is exploited
to generate the offspring.

4. Conclusion

In this paper have been presented a newest evolutionary methodology to direct
the search process and implemented this approach for automatic test program generation of
MICTOProCcessor systems.

The code generator exploit a directed graph for implementation the flow of an assembly
program and an subprogram library for describing the assembly syntax. In comparison with the anthers
methodologies for gencration of test program in this approach compilation of the subprogram library
is a frivial task ,compared to approach with human preparing of subprogram library. Moreover,
concurrently to test program generation, the evolutionary core adapts its internal parameters,
reducing even more the required user effort. In contrast to other methodologies, human
intervention is limited to the enumeration of all available instructions and their possible operands.

This approach outperform all former approaches, reaching a fault coverage more than
90%.

5. References

[1]A.Teller and M.Veloso. “Pado:A new learning architecture for object recognition.” In Sysmbolic
Visual Learning”,pp. 81-116.0xford University Press,1996

[2]Riccardo Poli, “Evolution of graph-like programs with parallel distributed genetic programming
.",In Thomas Back ,editor ,Genetic Algorithms : Proceedings of the Seventh International Conference,
pp.346-353,Michigan State University , East Lansing ,

MILUSA,19-23 July 1997 Morgan Kaufmann

[3] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone. “Genetic Programming: An Introduction.”
Morgan Kaufmann, Inc., San Francisco, USA, 1998.

[4] Kantschik, W., P. Dittrich, M. Brameier, and W. Banzhaf. 1999, “MetaEvolution in Graph GP”,
Proceedings of EuroGP'99, LNCS, Vol. 1598. SpringerVerlag, pp. 15-28.

[5] L. Chen, S. Dey, “DEFUSE: A Deterministic Functional Self-Test Methodology for Processors”,
[EEE VLSI Test Symposium, 2000, pp. 255-262

[6] F. Corno, M. Sonza Reorda, G. Squillero, M. Violante, “On the Test of Microprocessor IP Cores”,
IEEE Design,Automation & Test in Europe,

2001, pp. 209-213

[7] W. Kantschik, W. Banzhaf, "Linear-Graph GP -- A new GP Structure”, EuroGP2002: 4 tn
European Conference on Genetic Programming, 2002, pp. 83- 92

[8] F. Corno, G. Cumani, M. Sonza Reorda, G. Squillero, “Evolutionary Test Program Induction for
Microprocessor Design Verification”, 11th Asian Test

Symposium, 2002, pp. 368-373

[9] F. Corno, G. Cumani, M. Sonza Reorda, G. Squillero, “Efficient Machine-Code Test-Program
Induction”,Congress on Evolutionary Computation , 2002,pp. 1486-1491

[10] F. Corno, G. Cumani, M. Sonza Reorda, G. Squillero,” Fully Automatic Test Program Generation
for Microprocessor Cores”,DATE2003: Design, Automation and Test in Europe, Munich, Germany,
March 3-7, 2003, pp. 1006-1011

254

