
Cybernetics and Systems Analysis, Vol. 49, No. 1, January, 2013

NEW MEANS OF CYBERNETICS, INFORMATICS,

COMPUTER ENGINEERING, AND SYSTEMS ANALYSIS

MODIFICATION OF THE MICROCOMMAND

ADDRESSING SYSTEM IN A CONTROL UNIT

WITH CODE SHARING

A. A. Barkalov,
a

L. A. Titarenko,
a

and A. N. Miroshkin
b

UDC 004.3

Abstract. This article proposes two modifications of the microcommand addressing system in

a compositional microprogram control unit with code sharing. The modifications are based on using

FSM pseudoequivalent states to reduce the number of rows in the FSM transition table and thereby to

reduce the complexity of the combinational part of the device. Methods are proposed for synthesizing

compositional control units with a modified microcommand addressing system. The research results

are presented and appropriate fields of application of the methods proposed are considered.

Keywords: graph-scheme of an algorithm, control unit, compositional microprogram control unit,

code sharing, FPGA programmable logic, microcommand addressing.

INTRODUCTION

A digital system consists of a control unit (CU) and an operational unit. The CU produces a sequence of control

signals under the action of which the operational unit executes definite microoperations [1]. To specify a sequence of

actions, the language of graph-schemes of algorithms (GSAs) is used. The functioning of a CU implementing a GSA is

described by a digital FSM model [2]. Practical implementations of CUs of different types are characterized by factors such

as hardware expenditures and time characteristics (clock cycle duration and time to failure). In practice, as a rule, the

problem of minimization of hardware expenditures is topical [3] whose solution depends on distinctive features of a control

algorithm and the element basis used for implementing a device. In the case when a linear algorithm should be implemented,

it is expedient to use the model of a compositional microprogram control unit (CMCU) from [4, 5].

This work is devoted to the investigation of the process of implementation of a CMCU circuit in the basis of integral

circuits of the type of FPGAs (field-programmable gate arrays) [6, 7]. The functional element of an FPGA is the so-called

look-up table (LUT). Each LUT element can be used not only as a functional generator but also as a synchronous small

memory. In addition to LUT elements, the majority of modern FPGAs contain special programmable memory blocks each of

which is a synchronous random access memory (RAM) whose size equals 18 Kb [8]. A block RAM is used in circuits to

store a relatively larger amount of data more efficiently than the mentioned distributed memory based on LUT elements.

An implementation of finite-state machines (FSMs) with FPGA-based memory is described [9–13].

Some approaches to modifying a microcommand addressing system on the basis of the model of a CMCU with code

sharing [4] are considered below, but the proposed idea can also be implemented on the basis of other structures of control

units with memory.

1391060-0396/13/4901-0139

©

2013 Springer Science+Business Media New York

a

University of Zielona G�ra, Zielona G�ra, Poland, A.Barkalov@iie.uz.zgora.pl.
b

Donetsk National Technical

University, Donetsk, Ukraine. Translated from Kibernetika i Sistemnyi Analiz, No. 1, January–February, 2013, pp. 161–171.

Original article submitted October 13, 2011. Updated article submitted March 12, 2012.

140

MODEL OF A CMCU WITH CODE SHARING

The initial data for synthesizing a CU consist of the graph-scheme of a control algorithm. Let an arbitrary GSA �

consist of a set of vertices B and arcs (edges) E connecting these vertices. In this case, B b b B BE� � �{ }

0 1 2

, , where b
0

and

bE are the initial and terminal vertices of the GSA and B
1

and B
2

are the sets of operator and conditional vertices,

respectively. Vertices b Bm �
1

contain collections of microoperations Y b Ym()� , where m M� 1, , M B� | |

1

, is the total

number of operator vertices of the GSA and Y y yN� � �{ }

1

� is the set of microoperations (output functions of the FSM).

Vertices b Bq �
2

contain elements of a set of logical conditions X x xL� { }

1

,... , . We introduce some definitions used below.

Definition 1. A linear chain �g of operators of a GSA � is called a finite sequence of operator vertices

� 	b bg gFg1

, ... , such that, for any pair of its adjacent components, it contains an arc � 	 �

b b Eg gi i
,

1

, where i Fg� �1 1, and

Fg is the number of components in linear operator chains (LOCs) �g .

Definition 2. An operator vertex b Bm

g
� , where m Fg� 1, and B B

g
�

1

is the set of operator vertices belonging to

a LOC �g is called its input if there is an arc � 	 �b b Et m, , where b Bt

g
� . Each LOC �g has an arbitrary number of inputs

forming a set I I Ig g g() , ,...� � { }

1 2

.

Definition 3. An operator vertex b Bm

g
� is called an output of a LOC �g if there is an arc � 	 �b b Em t, , where

b Bt

g
� . An arbitrary LOC �g has only one output denoted by Og .

Definition 4. Chains � i and � j are called pseudoequivalent LOCs (PLOCs) if there are arcs � 	 �b b Ei t, and

� 	 �b b Ej t, , where bi and b j are the outputs of the LOCs � i and � j , respectively.

Definition 5. A graph-scheme � of an algorithm is called linear if the following condition is satisfied:

M

G

 2 ,

(1)

where G is the number of linear operator chains of the GSA, i.e., such a GSA is linear if the number of operator

vertices of the algorithm exceeds a minimum number of chains by a factor of no less than 2. Under condition (1), it

makes sense to use the CMCU model [4] to implement a control algorithm.

To find a partition of the set B
1

of operator vertices into a minimum number of LOCs, the method described in [4] is

used. After the formation of the set C G� � �{ }� �
1

� , each LOC �g contains Fg components, a binary code K g()� of length

� �R G
1 2

� log (2)

is assigned to it, and a code K bgi
() of length

� �R F
2 2

� log ()

max

(3)

is assigned to each component bgi
, where F F FGmax

max (,... ,)�
1

is the number of components in the LOC of

maximal length. For coding LOCs, elements of a set � are used and, for coding LOC components, elements of a set T

are used, where | |� � R
1

and | |T R�
2

.

Components are coded in natural order, i.e.,

K b K bg gi i
() ()

�

1

1 (, ; ,)g G i Fg� �1 1 . (4)

An operator vertex bm corresponds to the microcommand MI m whose address A MI m() is specified as follows:

A MI K K bm g gi
() ()

*
()� � , (5)

where

*

is the concatenation sign and the vertex bm corresponds to the component bgi
of the LOC �g .

The application of the principle of code sharing means that the address formation circuit (AFC) implements the

following system of excitation functions of the counter CT and register RG:

� �

� �

�

�

(,) ;

(,).

�

�

X

X

(6)

141

The CMCU model with code sharing (a CS-structure) is presented in Fig. 1 and functions as follows. At the

beginning of operation initiated by the signal Start, the trigger TB that enables reading from control memory (CM) is

switched to logic “1.” The address formation circuit provides the transition to the input vertex of one of LOCs �g . The

address formed for it and stored in the counter participates in fetching a definite microcommand from memory. If the current

vertex is not a LOC output, then the signal y
0

is formed that allows the counter to increase its content and thereby to address

the next component of the LOC �g according to the rule of natural microcommand addressing (4). After achieving the

output Og of the LOC �g , the signal y
0

is not formed, which leads to assigning the address of transition to an input vertex

of the next LOC to the counter. This address is formed by the AFC from the code of the current LOC (this code is stored in

the register RG). The device operation terminates when the signal yE is formed that inhibits the further reading of

microcommands. This signal is added to all the vertices whose outputs are connected with the GSA terminal vertex.

In implementing a CMCU circuit in the FPGA basis, in addition to CM, its blocks are also constructed from LUT

elements and distributed memory elements (latched triggers) and, in implementing its memory, embedded memory blocks

are used. If some part of resources of embedded memory blocks is not used, they can be used for decreasing the number of

LUT elements in the addressing circuit, which reduces hardware expenditures for the implementation of the device and

improves time characteristics of the circuit obtained.

MAIN IDEA OF THE PROPOSED METHOD

Transitions from pseudoequivalent chains are presented in the CMCU transition table by rows differing only in the

source of the code for the AFC. Thus, they can be replaced by one row with the code of a class of PLOCs as the source and,

as a result, the number of table rows and also the number of arguments and terms in functions of system (6) decrease. Codes

of PLOC classes can be stored in free resources of embedded memory blocks of FPGA microcircuits. In this article, the

following two approaches to modifying the microcommand addressing system are proposed: an extension of the format of

microcommands, i.e., the addition an auxiliary field to the format that will contain the code of a PLOC class; a modification

of chains, i.e., the inclusion of an additional vertex with the code of a PLOC class in the initial GSA at the end of each linear

operator chain that is not connected with the terminal vertex.

Let a LOC �g C�
1

if its output Og is not connected with the terminal vertex bE . We find a partition

�C IB B� { }

1

,... , of the set C
1

into PLOC classes and code each of them by a binary code of length � �R I
3 2

� log . For

coding PLOC classes, we use variables from a set Z z zR� { }

1

3

,... , . Then system (6) is transformed to the form

� �

� �

�

�

(,) ;

(,).

Z X

Z X

(7)

Ñõåìà

ôîðìèðîâàíèÿ

àäðåñà

CT

R

S

TB

E

Óïðàâëÿþùàÿ

ïàìÿòü

X

Y

y
0

yE

Fetch

Start

Start

Clock

RG + 1

T

Fig. 1. Block diagram of a CMCU

with code sharing.

�

�

�

�

Address

Formation

Circuit

Control

Memory

With extending the format of microcommands, their number in memory equals the following corresponding value for

a CMCU with code sharing:

� �
M G

1

1 2

2

� � �
() | |

log | |

min

max

�

� ,

where �
max

and �
min

are chains with maximum and minimum numbers of components, respectively. For ensuring

a minimum number of microprogram words, the maximal code out of the LOC codes being used should be assigned to the

LOC �
min

, and, as a result, the corresponding memory content will be stored in the memory space with maximal addresses.

After adding the auxiliary field, the length of each word will be equal to N N RY1 3

2�

 , where NY is the number

of bits required for coding the set of microcommands y Yi � (in the case of unitary coding of microoperations, we have

N YY � | |), and the constant 2 reserves two bits for storing the internal variables y
0

and yE . The lengths of the register and

counter are equal to the values specified by formulas (2) and (3).

A modification in a LOC can increase the number of microprogram words up to the value of

� �
M G

2

1

1 2

2

� � �

()

log (| |)

max

�

| |

min

� 1.

In a trivial implementation of the proposed approach, the word length is found by the formula

N N RY2 3

2�
max (;) .

The lengths of the register and counter after modifying chains are specified by formulas (2) and (3). However, the

value of the parameter F
max

can be increased, which will lead to the increase in the number of bits in the register. Note that,

with increasing the counter length, the SFA will form R
2

variables as before. The reason is that the direct jump to

a microcommand that contains only the code of a PLOC class will never take place. In this case, the high-order bit of data

for the counter will always be equal to zero.

We make the convention that a microprogram can be realized with parameters M i and N i using one block of built-in

memory.

We denote by FCS and MCS the CMCU models presented in Figs. 2a and 2b, respectively.

Principles of functioning of the basic model of a CMCU with code sharing (see Fig. 1) and the FCS and MCS models

are similar. The proposed method of synthesizing the considered structures includes the following stages:

— formation of the sets C, C
1

, and �C for the GSA �;

— optimal coding of chains �g C�
1

and their components;

142

Ñõåìà

ôîðìèðîâàíèÿ

àäðåñà

CT

R

S

TB

E

Óïðàâëÿþùàÿ

ïàìÿòü

X

Y

y
0

yE

Fetch

Start

Start

Clock

RG +1

Z

Z

Ñõåìà

ôîðìèðîâàíèÿ

àäðåñà

CT

R

S

E

Óïðàâëÿþùàÿ

ïàìÿòü

X

Y

y
0

yE

Fetch

Start

Start

Clock

RG +1

Z

Z

TB

T

Fig. 2. Block diagrams of CMCUs with the following modifications in the microcommand

addressing system: (a) with an extension of the format of microcommands and (b) with

a modification in the GSA.

a b

� �
� �

�

� T

Address

Formation

Circuit

Address

Formation

Circuit

Control

Memory
Control

Memory

— coding of classes of pseudoequivalent chains Bi C�� ;

— formation of the CM content;

— formation of the CMCU transition table and system of transition functions (7);

— synthesis of the CU circuit in a given basis.

The first stage is carried out according to the method described in [4]; in this case, the number G of LOCs �g C� is

minimally possible. �C is trivially partitioned on the basis of definition 4.

An optimal coding of a LOC �g C�
1

is performed according to a method similar to the optimal coding of states of

a Moore FSM [15]. To solve this problem, well-known methods of symbolic minimization are used [3]. Components of all

LOCs are trivially coded as follows: the codes whose decimal equivalents are equal to zero, one, two, etc. are assigned,

respectively, to the first, second, etc. components. This coding satisfies equality (4).

The method of coding classes Bi C�� must minimize the number of terms in a function z Zr � . Adapting the

well-known (for D-triggers) method of coding states [15], we obtain that the more generalized intervals are necessary for the

representation of a class Bi C�� , the smaller number of 1s must contain its code.

The CM content is created in the form of a table with the fields A MI m() , Y bm() , y
0

, yE , and C Bi() . In this case,

for the FCS CMCU structure, the fields Y bm() and C Bi() are separate columns as well as the other fields. In the case of the

MCS structure, these fields are written in one column whose content is treated depending on the value of the variable y
0

. In

this case, the column width is selected as max(;)N RY 3

, and nonsignificant zeros are added to codes in fields with smaller

width.

Before the construction of the memory content, the initial GSA is transformed [4]. If a vertex bgi
of a LOC �g C�

1

is not the output of the LOC, then the variable y
0

1� is inserted into it and determines the natural addressing for the next

component of the LOC. If �g C�
1

, then the variable yE � 1 is inserted into the vertex Og and completes the operation of

the FSM.

The transition table for the CMCUs being considered contains the following columns: Bi is the PLOC class from which

a transition is performed, k Bi() is the code of the PLOC class, bm is the vertex to which the transition is performed, A MI m()

is the address of the microcommand corresponding to the vertex bm , X h is the conjunction of logical variables determining the

transition from the output Og of a LOC �g iB� to the vertex bm in the hth row of the transition table, �h and �h are the

excitation functions of the register and counter, respectively, and h is the number of a term (a transition table row).

Each function of system (7) is represented in the form

d P B C x i Ri
h

H

i

h

h
l

L

l

h

l

h
� � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�� �

� �1 1

1(,) , (8)

where di is the excitation function of the ith bit of the FSM state register (di i� � when i R� 1

2

, and d Ti R i
 �
2

when

i R� 1

1

,); Pi

h
is a variable determining the presence of the function di in the hth row of the transition table (Pi

h
� 1 if

the function di is present in the hth row and Pi

h
� 0 otherwise); Bh is the conjunction of bits qr

h
of the code of

a PLOC class (qr

h
is the value of the rth bit (,)r R� 1

3

of the code k Bi() of a PLOC class Bi C�� in the hth row of

the transition table; q qr

h

r� if the rth bit of the code is equal to logic “1” and q qr

h

r� otherwise); x
l

h
is a variable

determining the value of the logical condition xl in the hth row of the transition table (x x
l

h

l� if the transition in the

hth row takes place when the condition is fulfilled, and x x
l

h

l� when the condition is not fulfilled); C
l

h
a variable

determining the presence of the logical condition xl in the hth row of the transition table (C
l

h
� 1 when the signal xl is

present and C
l

h
� 0 when it is absent), H is the number of rows in the transition table, R

3

is the length of the code of

a PLOC class, and L is the number of logical conditions.

The synthesis of a CMCU circuit is reduced to the implementation of the model of its control unit in the FPGA basis

with the help of one of standard applied packages [16, 17] and is beyond the scope of this article.

143

EXAMPLE OF APPLICATION OF THE PROPOSED METHOD

Let some GSA �
1

contain M � 17 operator vertices that form the set C � � �{ }� �
0 7

� of LOCs, where

�
0 0 1 2

� � 	b b b, , , �
1 3 4 5

� � 	b b b, , , �
2 6 7

� � 	b b, , �
3 8 9 10

� � 	b b b, , , �
4 11 12

� � 	b b, , �
5 13 14

� � 	b b, ,

�
6 15 16

� � 	b b, , and �
7 17

� � 	b bE, . G � 8 LOCs out of M � 17 operator vertices are obtained. Condition (1) is fulfilled and,

hence, it is expedient to use the CMCU model.

The chain �
7 1

�C since it contains the terminal vertex of the GSA. The set of logical conditions includes L � 4

elements, and the FSM produces N � 6 control signals. The partition �C B B� { }

0 3

,... , into PLOC classes is obtained from

the set C
1

, where B
0 0 5

� { }� �, , B
1 1 2 4

� { }� � �, , , B
2 3

� { }� , and B
3 6

� { }� .

To code the GSA vertices according to formulas (2) and (3), it suffices to use R
1

3� elements of the set

� � � �� { }

1 2 3

, , and R
2

2� elements of the set T T T� { }

1 2

, . The codes of vertices of the GSA �
1

are presented in Table 1 in

which the added vertices for the CMCU with modifications in LOCs are given in brackets. According to expression (5), the

code of a vertex is formed as the concatenation of the LOC code and the code of the component itself, i.e., k b()

0

00000� ,

k b()

3

00100� , k b()

16

11001� , etc. We code classes Bi C�� as follows: k B()

0

00� , k B()

1

01� , k B()

2

10� , and

k B()

3

11� . In synthesizing the CMCU with modified chains of the control algorithm, the vertex containing the code k Bi() is

introduced at the end of each LOC �g C�
1

, where �g iB� .

Recall that the variable y
0

is written in vertices that are not outputs of LOCs �g C�
1

. The variable yE is written in

the vertices connected with the terminal vertex of the algorithm. The other fields of the set Y are formed according to the

GSA content. Fragments of memory content for the CMCU structures being investigated are presented in Fig. 3, where the

black font highlights PLOC codes participating in the formation of the address of a transition, and the light font highlights

spare memory areas. Contents of all the other chains �g C� are similarly obtained.

The transition table is constructed from the initial graph-scheme, and functions (7) are obtained from this table. Let us

consider the transition table for the GSA �
1

(Table 2).

144

TABLE 1

T T
2 1

Codes of Vertices for the LOC (� � �3 2 1)

�
0

(000)

�
1

(001)

�
2

(010)

�
3

(011)

�
4

(100)

�
5

(101)

�
6

(110)

�
7

(111)

00
b

0

b
3

b
6

b
8

b
11

b
13

b
15

b
17

01
b
1

b
4

b
7

b
9

b
12

b
14

b
16

—

10
b

2

b
5

()b
20

b
10

()b
22

()b
23

()b
24

—

11

()b
18

()b
19

—

()b
21

— — — —

Fig. 3. Fragments of the contents of control memory for the CMCU with an extension of the format

of microcommand (a) and with a modification of LOCs of the control algorithm (b).

1

0 1 0

0

1

—

—

Address Microcommand

�
1

bm

LOC

0 0 1

�
2

�i

—

b
3

b
4

b
5

b
6

b
7

�
3

�
2

�
1

T
2

T
1

0

0

01

11

0

1

0

0

01

11

yE y
1

y
2

y
3

y
4

y
5

y
6

y
0

z
2

z
1

00

00

0 001010

0 000 000000

0 000 000000

0 000 000000

10 010000

1001 000000

1 00

10

0 000100

00 101000

1

0 1 0

0

1

—

Address
Microcommand

�
1

bm

LOC

0 0 1

�
2

�i

b
3

b
4

b
5

b
6

b
7

�
3

�
2

�
1

T
2

T
1

0

0

01

11

0

1

0

0

01

11

yE

y
1

y
2

y
3

y
4

y
5

y
6

y
0

0 001010

b
19

b
20

(z
2

)
(z

1

)

10 010000

11 000000

00 000100

10 000100

10 101000

00 000100

00 000000

a
b

We represent each function of system (7) in the form of functions (8) as follows:

B z z B z z B z z B z z
0 1 0 1 1 0 2 1 0 3 1 0

� � � �; ; ; ;

� �
3 1 2 2 0 1 1

� � � �B B B x B; ;

�
1 0 1 0 1 2 1 4 2 3 3

� � � � �B x B x x B x B x B ; T B T
2 3 1

0� �; .

As has been already mentioned, the stage of implementation of CMCU circuits is not considered in this article.

However, the authors realized a computer-aided design system (CADS) that, together with the package Xilinx ISE Webpack,

allows one to synthesize the proposed CMCU circuits.

RESULTS OF INVESTIGATIONS

An analysis was conducted with the help of the developed CADS for control units that synthesizes models of

structures of a control unit from the description of the graph-scheme of the control algorithm in the XML format. A model is

understood to be a VHDL description of the circuit of a device and files for programming its ROM (for devices with

memory). These models are entered into the system Xilinx ISE Webpack which implements them in terms of one of

available microcircuits. The implementation project files of a device contain data on the involved hardware resources of

a microcircuit, critical paths of a signal and time parameters of the device, its power consumption, etc.

For the experiment being considered, GSAs with the following parameters are chosen: from 10 to 500 vertices with the

step equal to 10; from 50% to 90% of operator vertices with the step equal to 10%; 15 microoperations; five logical conditions.

For each GSA, the structure of aCMCU with code sharing (CS) and also the FCS- and MCS-structures being

investigated were synthesized. With a view to comparing with the class of FSMs with hardwired logic, Mealy FSMs were

also synthesized. Each measurement presented in the diagrams is the average value of the results of synthesizing five

different GSAs with identical parameters.

An analysis of hardware expenditures has shown the efficiency of using the proposed methods for all the investigated

GSAs (Fig. 4).

The proposed CMCU structures (see Fig. 4) require smaller hardware expenditures than the basic CMCU with code

sharing and a Mealy FSM. Note that hardware expenditures for an implementation of a Mealy FSM increase with increasing the

percentage of operator vertices in a GSA but decrease for an implementation of a device of the CMCU class. The differences

between the values of hardware expenditures for FCS- and MCS-structures of CMCUs are minimal and resemble statistical

deviations. For the further comparison of data structures, we will investigate time characteristics of the obtained circuits.

The time characteristics being investigated are the clock signal period and duration of formation of output functions.

The first parameter makes sense when logical conditions are specified depending on the operating mode. If the choice of an

algorithm branch is determined by the result of the previous operation, then the second time parameter makes sense as

determining the maximal time period after the formation of the last condition out of the logical conditions during which the

device generates output functions.

145

TABLE 2

Bi k Bi() bm A MIm() Xh �h �h h

B
0

00

b
3

00100

x
1

�
1

— 1

b
8

01100

x x
1 2

�
2

�
1

— 2

b
6

01000

x x
1 2

�
2

— 3

B
1

01

b
15

11000
x

4

�
3

�
2

— 4

b
17

11100

x
4

�
3

�
2

�
1

— 5

B
2

10

b
11

10000

x
3

�
3

— 6

b
13

10100

x
3

�
3

�
1

— 7

B
3

11

b
5

00110 1

�
1

T
2

8

An analysis of the diagrams presented in Fig. 5 allows one to draw the conclusion that the proposed CMCU structures

not only occupy a smaller area but also can have a smaller cycle time than CMCUs with code sharing and a Mealy FSM.

However, the comparison of the synchronization signal period, as before, does not allows one to draw the conclusion about

some preferable control unit structure.

146

Fig. 4. Diagrams of hardware expenditures in implementing different CMCU

structures when the GSA contains 70% of operator vertices (a) and 90%

of operator vertices (b).

Number of GSA Vertices

Number of GSA Vertices
N

u
m

b
e
r

o
f

L
U

T
e
le

m
e
n

ts

N
u

m
b

e
r

o
f

L
U

T
e
le

m
e
n

ts

b

a

Fig. 5. Diagrams of the synchronization signal period of circuits of different control

units when the GSA contains 70% of operator vertices (a) and 90%

of operator vertices (b).

Number of GSA Vertices

Number of GSA Vertices

S
y
n

c
h

ro
n

iz
a
ti

o
n

S
ig

n
a
l

P
e
ri

o
d

,
n

s

S
y
n

c
h

ro
n

iz
a
ti

o
n

S
ig

n
a
l

P
e
ri

o
d

,
n

s

b

a

The performed investigations of the duration of forming output functions (Fig. 6) have shown that the CMCU

structure with the extension of the microcommand format forms output functions quicker than the CMCU with

a modification in LOCs of the control algorithm for all the considered GSAs. This is conditioned by the additional circuit at

the output of the device; during the moments of transition of the FSM from one LOC to another, this circuit makes it

impossible to treat the code of a PLOC class as output signals.

Note that all the obtained circuits of control units with memory used no more than one block of an FPGA microcircuit

with built-in memory.

CONCLUSIONS

An extension of the format of microcommands and a modification in LOCs of the initial GSAs have shown a

decrease in hardware expenditures by 40% on the average in comparison with the basic CMCU structure in implementing

CU circuits in the basis of modern FPGA microcircuits.

147

Fig. 6. Diagrams of duration of forming CU output functions when a GSA contains

70% of operator vertices (a), 90% of operator vertices (b), and also diagrams of

relative durations of forming output functions in the case when a GSA contains

90% of operator vertices (the values for the MCS-structure are normalized with

respect to the values for the FCS-structure) (c).

Number of GSA Vertices

Number of GSA Vertices

T
im

e
,

n
s

T
im

e
,

n
s

b

a

Number of GSA Vertices

c

R
e
la

ti
v

e
T

im
e
,

%

To implement the proposed CMCU structures in the basis of the Spartan-3 microcircuit of Xilinx, Inc., the authors

obtain an analytical dependence between parameters of an input GSA and hardware expenditures necessary for implementing a

device. The dependence is of the form Q N N p� �
 �(. . .)0026 2 56 1011

2

, where N is the total number of vertices in the GSA,

and p is the portion of operator vertices in it, p �[, ; ,]0 5 0 9 . This dependence can be used for other FPGA microcircuits of

Xilinx with four-input LUT elements. The error of the formula for a GSA in which the number of vertices is no more than 70

does not exceed 20%, whereas the statistical error can reach the value of hardware expenditures for small GSAs.

The duration of the clock signal period and time of formation of output signals for the proposed structures are

approximately 1.7–2.5 ns in comparison with 5–6 ns for a Mealy FSM; for a CMCU, these values are fixed and depend on

the type of a microcircuit, and, in a Mealy FSM, delays increase with increasing the complexity of a circuit. The use of

a specialized system for computer-aided design of control units decreases the time of development of digital devices (from

several hours to several minutes for unsophisticated GSAs).

REFERENCES

1. S. Baranov, Logic and System Design of Digital Systems, TUT Press, Tallinn (2008).

2. V. M. Glushkov, Synthesis of Digital Automata [in Russian], Fizmatgiz, Moscow (1962).

3. G. DeMicheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill, N.Y. (1994).

4. A. Barkalov and L. Titarenko, Logic Synthesis for Compositional Microprogram Control Units, Springer, Berlin

(2008).

5. A. A. Barkalov, L. A. Titarenko, and K. N. Efimenko, “Optimization of circuits of compositional microprogram

control units implemented on FPGA,” Cybernetics and Systems Analysis, 47, No. 1, 166–174 (2011).

6. R. I. Grushnitskii, A. Kh. Mursaev, and E. P. Ugryumov, Design of Systems on the Basis of PLDs [in Russian], BHV,

St. Petersburg (2002).

7. V. V. Solov’ev and A. S. Klimovich, Logic Design of Digital Systems on the Basis of Programmable Logic

Integrated Circuits [in Russian], Goryachaya Liniya-Telekom, Moscow (2008).

8. M. Kuzelin, Xilinx EPLDs: The Spartan-3 FPGA Family, http://chip-news.ru/archive/chipnews/200305/2.html

9. R. Senhadji-Navarro, I. Garcia-Vargas, G. Jim�nez-Moreno, and A. Civit-Ballcels, “ROM-based FSM

implementation using input multiplexing in FPGA devices,” Electronics Letters, 40, No. 20, 1249–1251 (2004.)

10. M. Rawski, H. Selvaraj, and T. �uba, “An application of functional decomposition in ROM-based FSM

implementation in FPGA devices,” J. of Syst. Archit., 51, Nos. 6–7, 424–434 (2005).

11. V. Sklyarov, “Synthesis and implementation of RAM-based finite state machines in FPGAs,” in: Proc. 10th Intern.

Conf. “Field-programmable logic and applications: The roadmap to reconfigurable computing (FPL 2000),” Villach,

Austria (2000), pp. 718–727.

12. A. Tiwari and K. A. Tomko, “Saving power by mapping finite-state machines into embedded memory blocks in

FPGAs,” in: Proc. Conf. on Design, Automation, and Test in Europe (DATE ‘04), Vol. 2, Paris (2004), pp. 916–921.

13. E. Garcia, “Creating finite state machines using true dual-port fully synchronous selectRAM blocks,” Xcell J., No. 38,

36–38 (2000).

14. A. A. Barkalov, L. A. Titarenko, and S. A. Tsololo, “Optimization of a logic circuit implementing a Moore automaton

in CPLD basis,” Cybernetics and Systems Analysis, 45, No. 5, 835–841 (2009).

15. A. Barkalov and L. Titarenko, Logic Synthesis for FSM-Based Control Units, Springer, Berlin (2009).

16. B. S. Frenkel and M. S. Kuzmich, Xilinx WebPACK ISE, http://ru.wikibooks.org/wiki/ Xilinx_WebPACK_ISE.

17. Altera Design and Programming Tools, http://www.altera.ru/cgi-bin/go?19.

148

	Abstract
	INTRODUCTION
	MODEL OF A CMCU WITH CODE SHARING
	MAIN IDEA OF THE PROPOSED METHOD
	EXAMPLE OF APPLICATION OF THE PROPOSED METHOD
	RESULTS OF INVESTIGATIONS
	CONCLUSIONS
	REFERENCES

