« »

-

____ «___» 2011 .

621.75.008.001.2 (071)

•

. . , .

© , 2010

1 1. 2. 2.1 2.2 2.3 1 ().

; -,

2				
	2.1			
	2.1	,		
	-			,
	-			
,				
•				
,				
•				
,		•		
		,	,	
			,	
,		,		•
,				
			,	
	,		,	
		,		
				,
•				
•				
	_		•	
	_	,		
		,		
-	_			

). 2.2 (

, ,

. .), 2.3 $q_k = \sum_{i=1}^n q_i c_i$ i-ro ; c_i q_i q_i . q_i): ($q_k = \prod_{i=1}^n q_i^{c_i}$) $P = W/(K_o + S)$ W —

 $+b /(1/tg\varphi + 2r/s) + R$

 $R_{Z}=h_{I}+h_{2}+h_{3}+h_{4} , \qquad \vdots \\ h_{I},h_{2},h_{3},h_{4} - & & & & & \\ \varphi < \arcsin \frac{s}{2r};\varphi_{1} < \arcsin \frac{s}{2r} : \\ R_{Z} = \frac{r(1-\cos\varphi)}{\cos\gamma} + \frac{tg\varphi \cdot tg\varphi_{1}(s-r(\sin\varphi+\sin\varphi_{1}))-r \cdot tg\varphi(\cos\varphi_{1}-\cos\varphi)}{\cos\gamma \cdot (tg\varphi_{1}+tg\varphi)} + \\ +b \quad /(1/tg\varphi+1/tg\varphi_{1})+R \\ \varphi \geq \arcsin \frac{s}{2r};\varphi_{1} \geq \arcsin \frac{s}{2r} : \\ R_{Z} = \frac{r}{\cos\gamma} - \frac{\sqrt{4r^{2}-s^{2}}}{2\cos\gamma} + \frac{b \quad (2s+b \quad)}{32r} + R \quad . \\ \varphi \geq \arcsin \frac{s}{2r};\varphi_{1} < \arcsin \frac{s}{2r} : \\ R_{Z} = \frac{r \cdot (1-\cos\varphi_{1})+\sin\varphi_{1}}{\cos\gamma} + \frac{s\sin\varphi_{1}(2r-s\sin\varphi_{1})}{\cos\gamma} + .$

$$\gamma$$
- ; S- , r - , R - - - , b - -

$$b = 0.5 \rho \left(1 - 2\tau_0 / \sigma_T\right),\,$$

$$\rho$$
- ; σ -

T

$$\tau_o = 500/9.81 \Big(l^{-a(T+273)/100+b} + c \Big) , T = \frac{P}{10^3 \alpha F} \sigma (tS)^m V^l + 20^\circ,$$
 a, b, c, p, m, l -

;
$$F$$
 - ; σ -

V -

2

$$Y_{i} = k_{o}V^{k_{1}}S^{k_{2}}t^{k_{3}}r^{k_{4}}(50 + \gamma)^{k_{5}}\alpha^{k_{6}}j^{k_{7}},$$

$$V - , ; S - , / ; t - , ; r -$$

$$, ; \gamma - ; \alpha - ; \alpha - ; \gamma - ;$$

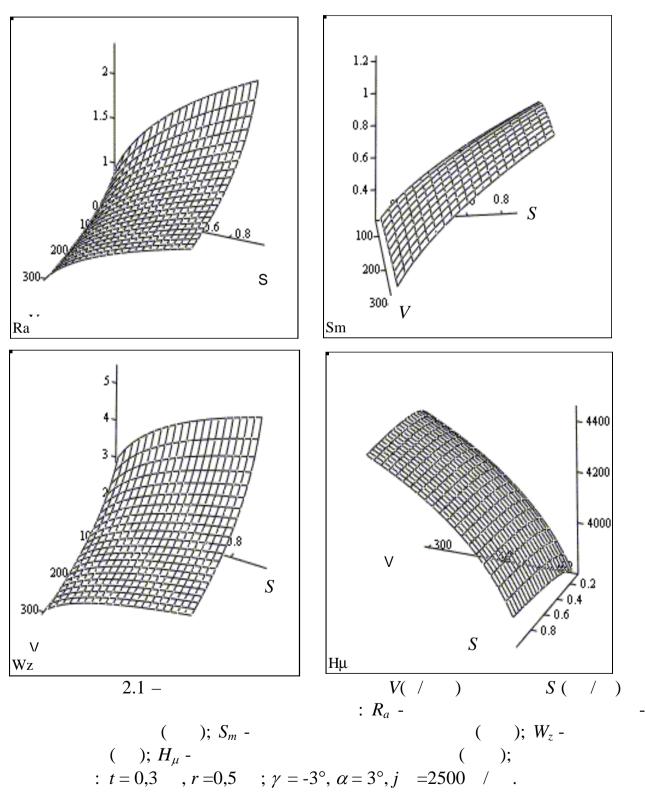
$$k_i$$
 2.1 22.

2.1 –

$$k_0$$
 k_1
 k_2
 k_3
 k_4
 k_5
 k_6
 k_7
 R_a ,
 83,6
 -0,45
 0,36
 -0,10
 0,12
 0,01
 -0,10
 -0,22

 S_m ,
 1,79
 0,18
 0,58
 -0,25
 0,15
 0,21
 0
 -0,31

 W_z ,
 1,55
 -0,50
 0,24
 -0,25
 0,21
 0,07
 0,26
 0,33


$$W_z$$
, $1,55$ $-0,50$ $0,24$ $-0,25$ $0,13$ $0,21$ 0 $0,26$ $0,33$ $0,21$ 0 $0,26$ $0,33$ $0,21$ $0,07$ $0,26$ $0,33$ $0,21$ $0,09$ $0,08$ $0,01$ $0,09$ $0,08$ $0,01$ $0,09$ $0,08$ $0,01$ $0,09$ $0,08$ $0,01$ $0,09$ $0,08$ $0,01$ $0,09$ $0,08$ $0,01$ $0,09$ $0,08$ $0,01$ $0,09$ $0,08$ $0,01$ $0,09$ $0,08$ $0,01$ $0,09$ $0,08$ $0,01$ $0,09$ $0,08$ $0,01$ $0,09$ $0,08$ $0,01$ $0,09$ $0,08$ $0,01$ $0,09$ $0,08$ $0,01$ $0,09$ $0,08$ $0,01$

2.2 -

	k_0	k_1	k_2	k_3	k_4	k_5	k_6	k_7
R_a ,	76,2	0,03	0,57	-0,08	-0,20	-0,35	-0,34	0,04
S_m ,	0,01	0,03	0,46	0	0,12	0,01	-0,19	0
W_z ,	29	-0,56	0,37	0	0,1	0,62	0,12	-0,05
H_{μ} ,	961,6	0,01	0,02	0,03	-0,01	-0,11	0	-0,09

$$:R_a$$
 - $;S_m$ $;W_z$ - $;H_\mu$ -

. 2.1.

3

2

1

$$z = 10^{3} \xi^{\left(N\frac{B}{S}^{-1}\right)} \left\{ t - \frac{y}{j} - \frac{y \left[E_{2} \left(1 - \mu_{1}^{2}\right) + E_{1} \left(1 - \mu_{2}^{2}\right)\right]}{4\pi E_{1} E_{2} S} \right\} \times \ln \frac{4\pi E_{1} E_{2} \left(D/2 + d/2\right) S}{P_{y} \left[E_{1} \left(1 - \mu_{2}^{2}\right) + E_{2} \left(1 - \mu_{1}^{2}\right)\right]} + \frac{l^{2} \left(1 \pm V_{D} / 60V\right)^{2}}{4D} \right\} + ,$$

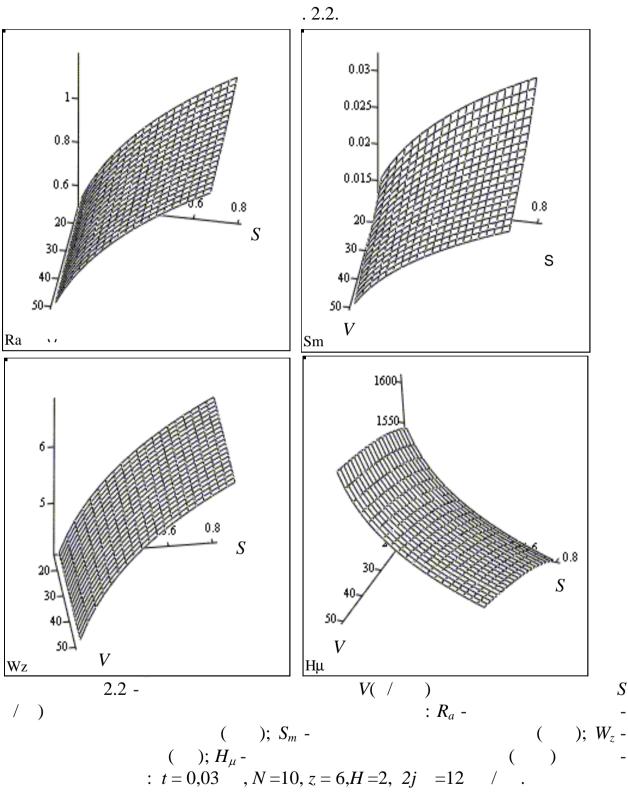
 $+\frac{\left(1-2\tau_{0}/\sigma_{T}\right)\left[2S+0.5r\left(1-2\tau_{0}/\sigma_{T}\right)\right]}{32}$

N j_T -

 $; D \quad d -$

.

3.3 -


 k_0 k_1 k_2 k_3 k_4 k_5 k_6 k_7 0,47 R_a , -0,06 0,36 -0,02 0,29 0,08 0,34 -0,01 S_m , -0,220,06 0,13 0,02 0,34 -0,150,04 0,24 W_z , 4,3 0,40 0,01 0,23 0,08 -0,06 0,18 0,10 2253 H_{u} 0,01 0,02 -0,01 0,03 -0,040,02 0,01

3.4 –

	k_0	k_{I}	k_2	k_3	k_4	k_5	k_6	k_7
R_a ,	9,25	-0,23	0,39	0,05	0.01	-0.04	0.06	-0,98
S_m ,	0,002	0,27	-0,02	0,08	0.29	0,19	0,62	-0,33
W_z ,	3,3	-0,18	0,61	-0,10	-0.42	0.32	0.06	-0,39
H_{μ} ,	243,4	0,05	0,03	0,01	0.01	0.01	-0.02	-0.03

; S_m

: R_a - ; W_z - ; H_μ -

4

:

1

1

2

3

 $oldsymbol{D}$

--

$$R_z = R_z + \left[PR^2 / \pi R \left(HB_{\text{max}} - HB_{\text{min}} \right) \right]^{1/3} + S/2r + R_z -$$

 $-R_{P} \quad \left\{ \frac{150P(1+f^{2})^{0.5}}{\pi R \quad t_{m} \quad H_{\mu} \left[\frac{180-\arccos(S-a)/a}{180} (h-h) + 2h \right]} \right\} \quad ,$

 R_z , R , t_m - ; - ; r-

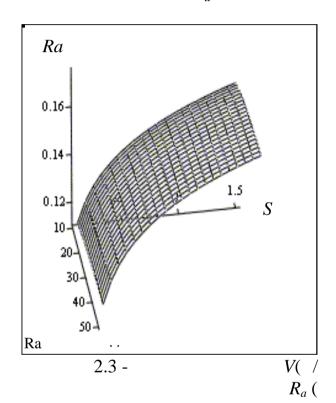
max, min

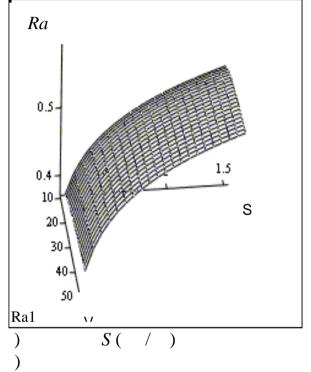
; $_{\mu}$ - ; a -

; h -

2

-•


 R_a :


 $R_a = R_a^{0.95} \ (\sigma_{\rm max})^{-0.24} d^{0.13} s^{0.14} v^{0.04},$ $R_a - , d - , v, s - ,$ $\sigma_{max} - .$

 R_a : $R_a = 1.1 R_a^{0.77} (\sigma_{\text{max}})^{-0.27} d_a^{-0.3} s^{0.14} v^{0.05},$

 d_a –

 R_a (.2.3)

3

3.1

·
,
,
.

(, ,).

3.2 2), ()

).

17 ()). 3.3

, -

•

5

2

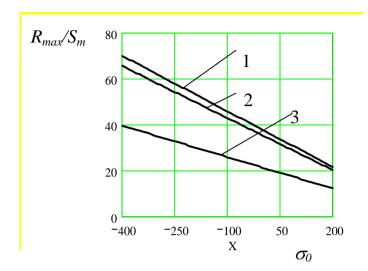
1

 α_{δ} ,

 $\alpha_{\sigma} = 1 + \sqrt{\frac{\gamma}{\rho}t},$

 $\alpha_{\sigma} = 1 + 2\sqrt{\frac{\gamma}{\rho}t}$

 $1, \rho$ -


 $\rho_{\min} = \frac{t_m^2 S_m^2}{8 \cdot 10^4 R_m},$

, %, S_m t_m -

, R_m -(

```
\alpha_{\sigma} = 1 + \frac{200}{t_m S_m} [2\gamma R_{\text{max}} (R_{\text{max}} - R_p)]^{0.5}
                                                                , R -
      R_{max} -
                                                   ( R 35-37),
                                     30
                                                                                     R = 0.74 R = 0.22
                                               14%,
                                      \frac{20}{(100-t_m)S_m} \left( \frac{60R_{\text{max}}R_a}{100-t_m} \right)^{0.5} = \frac{[\sigma]-\sigma_0}{\sigma} - 1
       [\sigma]-
                                                                                                , t_m - , \% , S_m - c
                              , R_{max} -
                    2
                                                      t_m=45\%, R = R_{max}/6, \sigma_0=150
                                                                        : R_{max}/S_m = 25.
                     : S_m = 0.16
                                          R_{max}=4,0
                                              t_m = 50\%, R = R_{max}/7, \sigma_0 = 50
                                                    S_m = 0.047 , R_{max} = 1.5
R_{max}/S_m=32,
                                              t_m = 60\%, R = R_{max}/5, \sigma_0 = -400
R_{max}/S_m=40,
                                                    S_m = 0.25 , R_{max} = 10.0
                                       \frac{R_{\text{max}}}{S_m} = \frac{(100 - t_{\text{max}})^{1.5}}{20 \cdot (60/n)^{0.5}} \cdot \left(\frac{[\sigma] - \sigma_0}{\sigma} - 1\right).
```

 R_{max}/S_m . 5.1.

S.1 - R_{max}/S_m : S_m : S_m

 R_{max} ,

 S_m

 $\sigma_0,$

•

1 2 1 80%) $I_h = \frac{\chi}{n\lambda} \sqrt{\frac{h}{\rho}} \frac{A_r}{A};$ n -λ - σ_T ; h ρ χ - $\chi = \frac{1}{2(\nu+1)} \sqrt{\frac{\nu}{2\alpha}};$ α -

6

 $\rho:\alpha\!\!=\!\!1;$ ν -

 $v = \frac{t_m R_p}{50 R_a} - 1;$

 $t_{\rm m}$, $R_{\rm p}$, $R_{\rm a}$ - ;

λ

$$\lambda = \left(\frac{\sigma - \sigma_{\tau}}{\sigma_{\alpha}}\right)^{t_{y}};$$

σ -

σα -

t_y -

 σ_{τ} -

$$\frac{A_r}{A} = \frac{p}{Ack_1\sigma_T};$$

p -

σ_T -

 k_1 -

$$I = \frac{1.2\pi v^{0.5} p^{\frac{r}{6}}}{n\lambda(v+1)t_m^{\frac{3}{2}} (H_{\mu})^{\frac{2}{3}}} \cdot \sqrt{\frac{30(1-\mu^2)(2\pi R_a W_z H_{max})^{\frac{1}{3}}}{ES_m}};$$
; W_z-

 S_m -

μ,

$$\frac{\left(R_a W_z H_{\text{max}}\right)^{\frac{1}{6}}}{t_m^{\frac{2}{3}} s_m^{\frac{1}{2} k^{\frac{2}{3}} \lambda}} = I \left(\frac{25\pi^{\frac{7}{6}}}{\chi p^{\frac{7}{6}}}\right) \frac{\sigma^{\frac{2}{3}} \frac{\frac{1}{2} n}{\left(1 - \mu^2\right)^{\frac{1}{2}}}$$

2,1 - 0,68

1,0 - 0,45

2,2 - 0,751,2 - 0,50

1,0 - 0,30

0.8 - 0.07

```
I = (R_a W_z H_{max})^{1/6} / \lambda_o t_m^{3/2} S_m^{1/2} (H_{\mu})^{2/3},
                                                      ; W_z - ; t_m -
R_a - ; H_{max} -
                                                                            I_o
. 1, 2
          3.
             1 -
                                                                       I_o
```

								-
	R_{a}	W_z	H_{max}	H_{μ}	t_{m}	S_{m}	λ	I_o
	1	1	1	1	1	1	1	1
-	0,25- 0,5	0.2.1.0	0,25- 0,4	0,5-	1 1	0,4-	0,9	1,07-
	0,5	0,3-1,0	0,4	0,75	1,1	0,7	0,9	1,25
-	0,07-	0,25-	0,15-	1,0-1,8	1,3	0,4-	1,1	0,21- 0,36
	0,4	1,5	0,4	1,0-1,8	1,3	1,4	1,1	0,36

.2

, ,

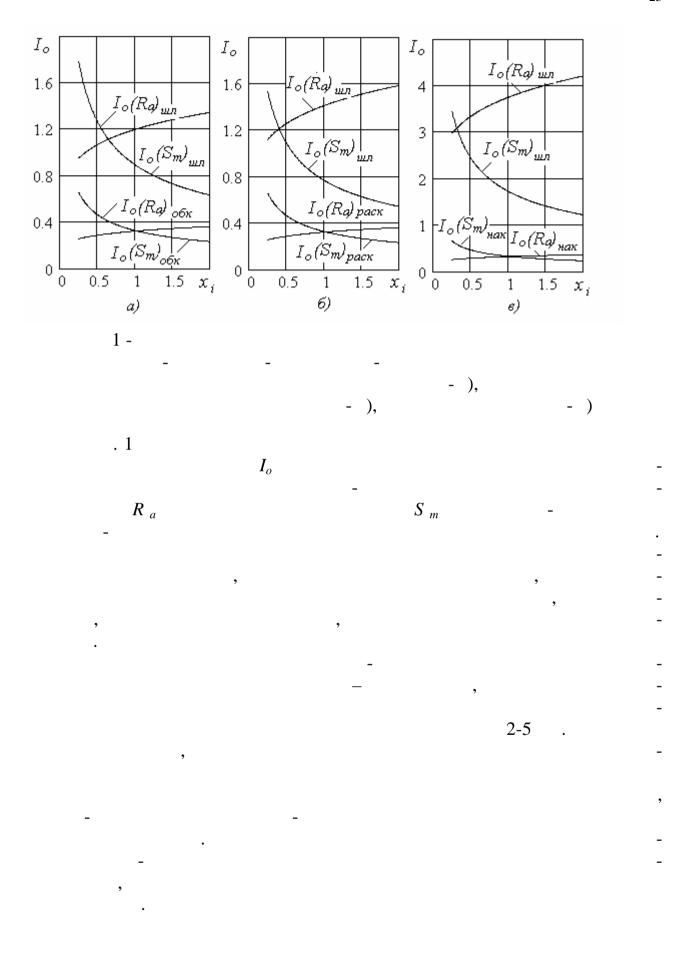
2 -

 I_o

								-
	R_{a}	W_z	H_{max}	H_{μ}	t_{m}	S_{m}	λ	I_o
-	1	1	1	1	1	1	1	1
-	0,40- 0,80	0,50- 1,0	0,4-0,5	0,75- 1,0	1,1	0,4- 0,5	0,9	1,2-1,8
-	0,06- 0,16	0,5-0,8	0.25- 0,5	1,5-2,0	1,3	0,4- 2,4	1,1	0,2-0,3

.2

, ,


,

								-
	R_{a}	W_z	H max	H_{μ}	t_{m}	S_{m}	λ	I_o
-	1	1	1	1	1	1	1	1
-	0,32- 0,40	0,5-1,0	0,3- 0,32	0,2- 0,25	1,1	0,3- 0,6	0,9	2,2-3,1
-	0,1- 0,21	0,6-0,8	0,3- 0,45	1,0-1,5	1,3	0,3- 1,2	1,1	0,28- 0,57

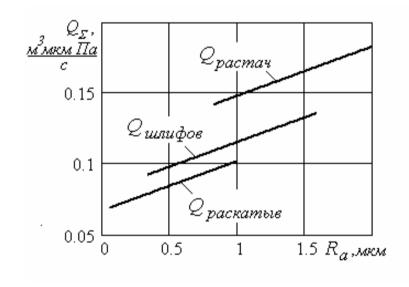
.3

,

,

1 2 1 [7]. , $Q_{\Sigma} = \pi D \Delta p H k'' / \mu' l$, , *l* D -, ⊿ -, *H* - $H = H_1 - y = (H_{max1} + H_{max2}) + (W_{z1} + W_{z2}) + (R_{z1} + R_{z2}) - y$, H_1 -; H_{max} - W_z -

 $k'' = Um^3 / \Sigma^2 ,$


7

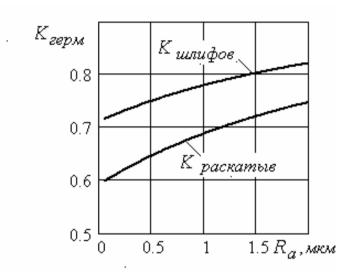
```
U -
                                                 (0,20-0,22), \Sigma-
                                , m -
                                m = (h - y)A/(H_1 - y)A = (h - y)/H,
                                h = (H_{p1} + H_{p2}) + (W_{p1} + W_{p2}) + (R_{p1} + R_{p2}),
              R , W , H -
                                                       \Sigma = S / V ,
              S -
                                                                                : S_n = 10,88A; V -
                                    : V = AH(1-m).
                      V = 0.5 A [ (H_{max1} + H_{max2}) + (W_{z1} + W_{z2}) + 6 (Ra_1 + Ra_2) - y ],
              R_a -
                                                             (2.43)
           (2.42),
(2.39)
                         (2.37)
         Q_{\Sigma} = 0.0066 \frac{\vec{D} \cdot \pi \cdot \Delta p U \{0.5 [(H_{\text{max}1} + H_{\text{max}2}) + (W_{z1} + W_{z2}) + 6(R_{a_1} + R_{a_2})] - y \}}{\mu' l},
                                                                                                             W_z
                                                                                   R,
                           H_{max}.
  2
                                                                                              . 1.
                                                         R,
                                                                                   W_z
H_{max}.
```

1 -

$R_{a,}$	$W_{z,}$	$H_{max,}$	$R_{a,}$	$W_{z,}$	$H_{max,}$
0.8-2.5	1.6-4.0	40-100	0.8-2.0	2.5- 6.25	20-80
0.2- 1.25	0.5-4.0	10-40	0.32- 1.60	1.25- 6.25	10-40
0.05- 1.0	0.4-2.5	6-40	0.05- 1.0	1.6-5.0	5-40

 $Q_{\Sigma}, \qquad R_a \qquad \qquad ($

Mathcad


Professional : D=100 , l=25 , y=3 ; U=0,21; $\mu'=3$; $\Delta p=10$.

 $K = Q_{\Sigma 1}/Q_{\Sigma 2},$

 $Q_{\Sigma I}$ $Q_{\Sigma 2}$ -

 R_a

. 2.

2. - R_a

20-40%

,

« »

1 2 1 σ σ $\sigma_O = \sigma + \sigma$ $\Theta(z)$: $\sigma_T(z) = \alpha E\Theta(z)$ α-; z – $\Theta(z) = \frac{PV\beta l}{2S_K \lambda \sqrt{\pi}} \frac{1}{\sqrt{Pe}} \int_0^1 \frac{f(\psi_u)d\psi_u}{\sqrt{1-\psi_u}} \exp\left(-\frac{Pe}{4} \cdot \frac{v^2}{1-\psi_u}\right)$; *V* ; *l* – ; β-P ; λ, ω – $v = z/l; \psi \psi = x_u/l;$

:

; $f(\psi_u)$ -

 $Pe = Vl/\omega$

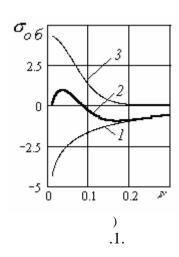
$$\sigma_M(z) = \frac{P}{\pi} \left[\frac{3}{2(r^2 + z^2)} + \frac{1.2}{r^2} \ln \left(\frac{z}{2r} \right) - \frac{3}{10r^2} \right]$$

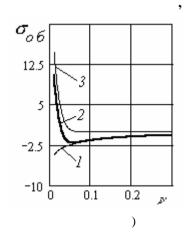
r _

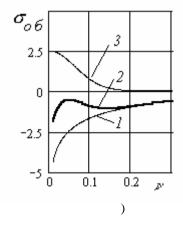
(4)
$$v = z/r \\ \sigma_M(z) = \frac{P}{S_K} \left[\frac{3}{2(1+v^2)} + 1.2 \ln\left(\frac{v}{2}\right) - 0.3 \right].$$

$$\sigma = \frac{S_K}{P} \sigma_o = \frac{S_K}{P} (\sigma + \sigma).$$

$$\sigma_T = \frac{V\beta l}{2\lambda \sqrt{\pi}} \frac{1}{\sqrt{Pe}} \int_0^1 \frac{f(\psi_u)d\psi_u}{\sqrt{1-\psi_u}} \exp\left(-\frac{Pe}{4} \cdot \frac{v^2}{1-\psi_u}\right)$$


$$\sigma = \left[\frac{3}{2(1+v^2)} + 1.2 \ln \left(\frac{v}{2} \right) - 0.3 \right]$$


2


_

,

,

.1.

(2) 3) (1) : V = 3 / , V30 / , V = 1 / . $f(\psi_u)=1$. $f(\psi_u) = \exp[-k_0(1-\psi_u)],$ 2 2 . 2 $\sigma_{_{\!{O}}}$, MII $_{\!{A}}$ 250 3 / , t = 1s = 0,20 = 400 -250 = 30 / ,s = 16t = 0.01500 L = 100 ; V = 1 / ,0.1 0.2 0.3 y, mm.2. 500 . - 1), - 2), 3). (

3)

```
2)
                                                        (
                                                                1)
                                      0,1
                                    . 2 . .1/
    1.
                                      , 1995.-256.
                                      2 . .2/ . .
                                    , 1995.-430 .
    3.
                                                                    , 1985.-
496 .
    3.
                                                ,1987. -208.
                             .:
    4.
                                                              ,2004. -400 .
    5.
                         ,2002. - 684.
   . .:
    6.
          ,2000. - 320 .
    7.
                                                              , 1979.- 175 .
    8.
                                      , 1990. -256.
   9.
   ,1988. - 736.
                                                   2- . . 2 /
   10.
                                                      . 1985. - 496 .
   11.
                                                      / . .
                                      i , 1983. - 239 .
    12.
                                             . , 1977.- 254 .
```