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ABSTRACT  
 
This paper presents mathematical models and optimization methods for decision making in CAE 
of mechanical transmission systems. The design problem is considered as a multi-criteria graph 
optimization problem. To solve it, a multilevel decomposition scheme is used in combination 
with methods of quadratic, dynamic and of nonlinear programming. 
   
INTRODUCTION 
 
Transmission systems are very important components of machines and mechanisms. The 
transmission design is a highly complex problem. In the literature, the main results concern the 
design of specific elements such as spring, gears, and shaft, see for example [1, 2, 3]. Some 
results were obtained in structural and parametric synthesis for certain type of transmission 
systems [4, 5, 6].  
The expert systems are widely used in order to take into account engineering experience and to 
integrate the partial optimization models in design process [7, 8, 9]. 
In this paper, we focus on the preliminary design stage of transmission systems of complex 
structure. Such systems consist of tens shafts and gears, and the number of kinematic chains 
(speeds) can be greater than 20. The transmission is considered as a multiunit system taking into 
account main interconnections between elements and main constraints. The design problem is 
stated as non-linear multi-criteria optimization problem with discrete, combinatorial and 
continuous variables. We propose a general scheme of optimization and iterative procedure for 
decision making. This scheme is based on multilevel parametric decomposition approach [10, 
11]. We develop also models and methods for the main sub-problems. 
 
FORMULATION OF DESIGN PROBLEM 
 
We investigate complex power transmissions, which can include an engine, speed gear box, 
chains of various gears, passing a motion from the engine to input shaft of speed gear box as well 
as from output shaft of speed gear box to actuator. 
We suppose that the structural scheme of the transmission has been selected at previous stages of 
design and that load conditions of actuator are known. We consider the problem to determine the 
following design parameters of the transmission system: 
 set of nominal speeds of output shaft of the transmission; 
 assigning the above set of speeds to kinematic chains; 
 transmission ratios (tooth numbers) of gears; 
 basic design parameters of transmission elements (types, diameters, widths of gears, 
diameters of shafts). 
We take into account the following basic functional, kinematic, strength and constructional 
factors to define the required design parameters: 
 the desired set of actuator speeds; 
 load conditions and total working times of actuator for each kinematic chain; 
 ranges of transmission ratios of gears; 



 ranges of absolute speeds of shafts; 
 total transmission life taking into account contact and bending endurance of gears and static 
rolling strength of shafts; 
 characteristics of used materials. 
We consider a deviation of the obtained set of output shaft speeds to the desired set, total 
transmission life and total mass of the transmission elements as criteria for design decision 
making. 
 
MATHEMATICAL MODEL  
 
We use a finite acyclic directed multigraph G=(V,E) for representing the structural scheme of the 
transmission. This graph has one initial node s and one terminal node t. The nodes s, t and vV 
=V\{s,t} correspond to the input shaft of the transmission (shaft of the engine), output shaft and 
intermediate shafts of the transmission, respectively, arcs from E correspond to the gears of the 
transmission. Each kinematic chain from the input shaft s to the shaft v  V\{s} defines in one-
to-one manner a path in multigraph G. 
Let us denote: 
- a nominal speed of the engine (input shaft s) by n0; 
- an unknown transmission ratio of the gear eE and its range by x(e), and [x(e), x (e)]  R; 
- unknown tooth numbers of the gear eE and a set of their feasible values by z e ii ( ), , ,1 2 and 
Zi(e); 
- a range of absolute speeds of the shaft vV by [n(v), n (v)]; 
- a collection of unknown design parameters (including teeth numbers) of the gear eE and a set 
of its feasible values by u(e) and U(e); 
- a collection of unknown design parameters of the shaft vV and a set of its feasible values by 
w(v) and W(v); 
- input and output shafts of the gear eE by v1(e) and v2(e); 
- the set of paths in G from node s to node v by L(v)={Lk(v) | k=1,,r(v)}. 
The permutation = (1,..., r(t)) of elements of set {1,...,r(t)} determines the one-to-one 
correspondence between the kinematic chains into the output shaft and the desired set C(t)=(C1, 
, Cr(t)) of speed of this shaft. Here k is a speed number from C, which is assigned to the 
kinematic chain k from L(t). Let  be a set of all feasible permutations of the set {1, ...,r(t)}. 
This set is mainly defined by the selected scheme of control of speed gearbox. 
Later on: 
x = ( x(e) | eE ); 
X = { x | x(e)[x(e), x (e) ] }; 
u = ( u(e) | eE ); 
w = ( w(v) | vV ); 
nk(v,x) = ),(/

)(
0 exn

vLe k



 Lk(v)  L(v), x  X, v V; 

N(v,x) = ( n1(v,x),, nr(v)(v,x) ). 
For the given engine power, load conditions of the actuator and each value from C, we assume 
that load conditions of the shaft vV and of the gear eE can be defined by collections 
(,N(v,x)) and (,x(e),N(v1(e),x)). The following functions then can be constructed: 
(i) functions Tv(,N(v,x),w(v)) and Te(,x(e),N(v1(e),u(e))) which determine a longevity of the 
shaft v V and a longevity of the gear eE for fixed values of unknown parameters x,w and u; 
(ii) functions Mv(w(v)) and Me(u(e)) which determine a mass of the shaft v V and a mass of the 
gear eE for fixed values of unknown parameters w and u. 
Under such assumptions, the considered design problem can be reduced to the following 
optimization problem: 
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g2(,x,u,w)=min(min{Tv(,N(v,x),w(v)) | vV}, min{Te(,x(e), N(v1(e), u(e)) | eE})  max,
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subject to: 
x  X , (4) 
nk(v,x)  [(n(v), n (v) ], vV, k=1,,r(v), (5) 
  ,  (6) 
x(e) = z2(e) / z1(e), eE'E, (7) 
zi(e)  Zi(e), i=1,2, eE', (8) 
w(v)  W(v), vV, (9) 
u(e)  U(e), eE. (10) 
Here the set E' corresponds to the set of gears for which its transmission ratio is determined by 
ratio of tooth numbers, the coefficients k(t), k=1,...,r(t) characterize the importance of closeness 
of the obtained values nk(t,x) to desired values Ck. 
The first criterion is to minimize a deviation of an obtained set of output shaft speeds from the 
desired set. The second criterion is to maximize the transmission life, and the third criterion is to 
minimize the total mass of the transmission. 
 
DECOMPOSITION SCHEME FOR SOLVING PROBLEM  
 
The problem (1-10) is a highly complicated multi-criteria optimization problem where the 
functions Tv(), Te(), Mv() and Me() are defined algorithmically. We propose a multilevel man-
machine decomposition scheme to obtain an approximate solution of the problem taking into 
account the character of connections between the unknown design parameters, specified factors 
and criteria. This scheme is based on simultaneous use of several decomposition techniques in 
combination with various methods of nonlinear programming. The scheme includes consecutive 
execution of the following procedures. 
At the first stage, as a result of minimizing the function g1(,x) on a set of all feasible (,x) we 
determine a vector C*= ( C*

k=nk(t,x*) | k =1,,r(t) ) (set of output shaft speeds) which is the 
nearest vector to the vector C as well as the optimal permutation * (Problem A). 
The designer performs an informal analysis of the obtained design decision. He can either repeat 
the first stage with modified data or go to next stage. 
At the second stage, for each value i of the total transmission life from sequence {1,2,} 
specified by the designer, we determine optimal (according to the total mass of the transmission) 
values of unknown parameters by minimizing the function g3(u,w). Simultaneously we provide 
that the set of the obtained speeds of output shaft is equal to C* (Problem B). The designer 
selects himself the most suitable combination of values  and  *

3g  where  *
3g  is the optimal 

value of function g3(u,w) for fixed . 
 
SOLUTION OF THE PROBLEM A 
 
The problem A is stated as follows: 
g1(,x)  min,  (11) 
, (12) 
xX , (13) 
nk(v,x)  [(n(v), n (v)], vV, k=1,,r(v), (14) 
x(e) = z2(e) / z1(e), eE'E, (15) 
zi(e)  Zi(e), i=1,2, eE'. (16) 



The problem A is also solved in two stages. At the first stage, we solve it without constraints 
(15-16) (Problem A1) and obtain preliminary values of (*,x*). At the second stage (Problem A2), 
we determine zi(e)Zi(e), i=1,2, eE', which minimize the function g1(*,x) for *k

CCk  , 
k=1,...,r(t), under constraints (13)-(16). 
For solving the problem A1 we consider it in logarithmic coordinates but for convenience we 
keep the same notations. In this case, it is a mixed optimization problem with linear constraints 
(14) including continuous variables x as well as combinatorial variables . An approximate 
solution of the problem A1 can be obtained by using the following decomposition scheme. If we 
fix variables x, then assignment problem arises. We denote this problem by A11(x) and its 
solution by *(x). If we fix variables  then a quadratic program arises. We denote this problem 
by A12() and its solution by x*().  
The number of constraints (14) in the problem A12() is very large and in general case is equal to 
the number of all paths in graph G from the vertex s to others. However, as a rule, the number of 
essential constraints is not more than |V'|. For solving the problem A12(), we use a general 
scheme of relaxation of constraints. First of all, the problem A12() is solved without constraints 
(14) and then we add step by step the constraints that are not valid for the obtained solution. At 
each step for each vertex v we add only those invalid constraints (14) which have the greatest 
discrepancies. The paths which correspond to above constraints can be also found by shortest 
path algorithms. 
We obtain the approximate solution of the problem A1 as a result of "coordinate-wise" (x and ) 
descent by solving in turn problems A11(x) and A12().  
One of the modifications of above scheme was proposed in [12]. It uses parametric properties of 
the problems A1(x) and A2() and takes into account that it is not obligatory to obtain the exact 
solution of the specified sub-problems during the iterative process. 
For solving the problem A2, we use one of the modifications of "branch and bound" method. To 
the current step of searching process, a feasible set of the problem A2 is partitioned into several 
subsets. The subset Pk is defined by segment ])(),([ exex kk  for each eE', by a set 

})()('{ exexEeE kkk   and by a bound  **
1 , kk xgq  , where *

kx  is the solution of the problem 
which is obtained from the problem A12(*) by replacing constraints (13) on constraints 

])(),([)( exexex kk , eE'.  
For branching at the current step, we choose the set Pk with minimal in lexicographic sense 
bound (Ek,qk). Among arcs eEk we find the arc e* with minimal value )()( *0 exex k , where 
x0(e) is the nearest value to )(* exk  in the set )(0 eX k of values ])(),([)( exexex kk  and satisfying 
constraints (15)-(16). For the arc e* we also determine values x1(e*), x2(e*) which are the nearest 
lesser and the nearest greater values to x0(e*) in )(0 eX k . Then the set Pk is partitioned into three 
(in general case) subsets with segments ])(),([ *1* exex k , ])(),([ *0*0 exex , and    ],[ **2 exex k .  
 
SOLUTION OF THE PROBLEM B 
 
The problem B is to minimize the function g3(u,w) for fixed =*,  {1,2,, } and *

k
CCk  , 

k=1,..., r(t), under constraints (4), (5), (7)-(10) and the additional constraints: 
g2(,x,u,w)   ,  
N(t,x)=C. 
To solve it, we propose the method, which is based on a system of invariants. 
Let D be a family of subsets d={ej(d)|j=1,, r(d)} of arcs eE which connect the same vertices, 
and (k,v) the minimal number in {1,,r(t)} such that Lk(v) is the subpath of path L(k,v)(t). 
Assume that sets Lk(v) are reordered in ascending code of (k,v). Under these assumptions, it is 
easy to prove  



Proposition. For any dD, vV and xX, such that N(t,x)=C values (ej(d)) x(ej(d))=(e1(d))  
x(e1(d)), j=1,,r(d), nk(v,x)=n1(v,x)k(v), nk(v, x)= n1(v,x), and ),()(

)(
ve k

vLe k




 k=1,, 

r(v), where k(v) and (e) are constants. 
Here x is component-wise multiplication of vectors x and . It should be noted that 1(v)=1 and 
(e)=1 for all vV and eL1(v). 
Values k(v), (e) for all vV and eE can be determined before solving the problem B. Using 
these values we can determine more precise ranges [a(v),b(v)] of n1(v,x). If we introduce change 
of variables q(e)=(e) x(e) then functions Tv(,N(v,x),w(v)) and Te(,x(e),N(v1(e),x), u(e)) can be 
redefined as follows: 
Tv(,N(v,x),w(v))=Tv

*(,n1(v,q),w(v)) 
Te(,x(e),N(v1(e),x),u(e))=Te

*(,q(e),n1(v1(e),q),u(e)). 
On the base of well-known techniques (for instance, [2]) we can construct the procedures for 
determining  
Mv

*(n1(v,q))=min{Mv(w(v))|Tv
*(*, n1(v,q), w(v)), w(v)W(v)}  

and  
Me

*(q(e),n1(v,q))= min{Me(u(e))| Te
*(*,q(e),n1(v1(e),q), u(e)), u(e)U(e)}.  

Then the problem B can be stated as follows: 
 
g(q)= 

Ee
eM * (q(e), n1(v1(e),q))) + 

Vv
vM * (n1(v,q))  min (17) 

q(e) [q(e), q (e)], eE, (18) 
q(e)/ (e) = z2(e) / z1(e), eE'E, (19) 
zi(e)  Zi(e), i=1,2, eE', (20) 
n1(v,q)[a(v),b(v)], vV,  (21) 
nk(t,q)=C1, k=1,,r(t), (22) 
w(v)  W(v), vV, (23) 
u(e)  U(e), eE, (24) 
where [q(e), q (e)]= [x(e) (e), x (e) (e)]. 
To solve problem B, we use the method of parametric decomposition [10, 11], introducing 
parameters y(v)=n1(v,q), vV and set Y={y=(y(v)| vV, y(v)[a(v),b(v)], y(v1(e))/y(v2(e))[q(e), 
q (e)], eE} of their possible values. In this case, the lower level problem is very simple, i.e. to 
find for fixed yY values q*(e,y), eE such that 
q*(e,y) = y(v1(e))/ y(v2(e)), eE,  (25) 
q*(e,y)/(e)=z2(e)/z1(e), zi(e)Zi(e), i=1,2, eE', (26) 
Let fe

*(y(v1(e)), y(v2(e))= Me
*(q*(e,y), y(v1(e))) if there exists q*(e,y), satisfying (25)-(26), and 

fe
*()=  otherwise. Then the upper level problem is to minimize function  

F(y)= 
Ee

 fe
*(y(v1(e)), y(v2(e)) + 

Vv
 Mv

*(y(v)) on set Y (Problem C). 

Problem C is a multiextremal problem in which functions fe
*() and Mv*() are defined 

algorithmically. It should be noted that effectiveness of applied methods depends on a topology 
of graph G. When G is a path then the problem can be solved using method of dynamic 
programming if we replace segments [a(v),b(v)] by their discrete representations. In general case 
we propose the decomposition scheme, which is based on recursive procedures of consecutive-
parallel decomposition of graph and its sub-graphs.  
 
CONCLUSIONS 
 
Multilevel parametric decomposition approach for multiunit transmission systems design is 
proposed. The models and methods for main sub-problems are developed.  



The proposed approach is oriented to active participation of experienced designer in decision 
making. It was used for creating a computer aided decision support system of transmission 
design in the Institute of Engineering Cybernetics of Belarus National Academy of Sciences [13, 
14, 15]. 
The developed system was tested at Minsk tractor plant and Minsk wheel tractor plant for 
solving real design problems. Use of the system provides improving the design decisions, 
including decreasing total metal consumption of the transmission by up 5-10% and considerable 
cutting down of labor effort at the considered stages of design. 
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