Лекция №2 КЛАССЫ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Основные понятия: оксид (основной, кислотный, амфотерный), основание, кислота (кислородсодержащая и бескислородная), амфотерный гидроксид, соль (нормальная или средняя, кислая), обменная реакция, реакция нейтрализации, ионное уравнение.

Перечень умений: составлять формулы веществ; по формуле определять, к какому классу соединений относится данное вещество; составлять уравнения реакций обмена (в молекулярном и ионном виде); называть вещества по международной номенклатуре.

Оксидами называются соединения элементов с кислородом, в которых кислород проявляет степень окисления -2. К оксидам не относятся, например, пероксиды (Na_2O_2 , K_2O_2 , BaO_2 и др.), потому что в этих соединениях степень окисления кислорода равна -1.

По свойствам различают три типа оксидов: основные – оксиды многих металлов, чаще всего в степенях окисления +1 и +2 (Na₂O, MgO, Ag₂O и др.); кислотные – оксиды неметаллов (SO₃, CO₂, N₂O₅ и др.), а также оксиды переходных металлов степени окисления больше, чем +4 ($\mathrm{Cr^{+6}O_3}$, $\mathrm{Mn_2^{+7}O_7}$, $\mathrm{V_2^{+5}O_5}$ и др.); амфотерные – оксиды элементов, которые могут проявлять как основные, так и кислотные свойства (BeO, ZnO, Al₂O₃ и др.).

Соединения оксидов с водой называют *гидроксидами*. К ним относятся: *основания* $(Mg(OH)_2, NaOH, Ba(OH)_2$ и др.); *кислородсодержащие кислоты* $(HNO_3, H_2SO_4, H_2CO_3$ и др.) и *амфотерные гидроксиды* $(Zn(OH)_2, Al(OH)_3, Be(OH)_2$ и др.). При этом основным оксидам соответствуют основания, кислотным — кислоты. Амфотерным оксидам соответствуют амфотерные гидроксиды, которые могут проявлять свойства как оснований, так и кислот.

Обратите внимание, что бескислородные кислоты (HCl, H_2S , HCN и др.) не являются гидроксидами.

Нерастворимые и мало растворимые гидроксиды обычно получают *реакцией обмена* между растворимой солью и щелочью. Например:

$$ZnSO_4 + 2NaOH = Zn(OH)_2 \downarrow + Na_2SO_4$$

или в ионном виде:

$$Zn^{2+} + 2OH^{-} = Zn(OH)_2 \downarrow$$

В водных растворах основания диссоциируют на гидроксид-анионы OH^- (и не дают никаких других анионов) и основные остатки. Кислоты диссоциируют на катионы водорода H^+ (и никакие другие катионы) и кислотные остатки. Например:

a)
$$Mg(OH)_2 \leftrightarrow MgOH^+ + OH^-$$

 $MgOH^+ \leftrightarrow Mg^{2+} + OH^-$
6) $H_2CO_3 \leftrightarrow H^+ + HCO_3^-$
 $HCO_3^- \leftrightarrow H^+ + CO_3^{2-}$

Амфотерные гидроксиды могут диссоциировать (хотя в виду их плохой растворимости степень такой диссоциации невелика) как по основному, так и по кислотному типу:

a)
$$Zn(OH)_2 \leftrightarrow ZnOH^+ + OH^-$$

 $ZnOH^+ \leftrightarrow Zn^{2+} + OH^-$
6) $H_2ZnO_2 \leftrightarrow H^+ + HZnO_2^-$
 $HZnO_2^- \leftrightarrow H^+ + ZnO_2^{2-}$

При составлении ионных уравнений сильно диссоциирующие вещества (электролиты) записывают распавшимися на ионы. Не записывают в виде ионов: вещества, не растворимые в воде(см. таблицу растворимости), газообразные вещества и слабые электролиты (H_2O , NH_4OH , H_2CO_3 , H_2SO_3 , H_2S , CH_3COOH и др.).

Контрольное задание: напишите в молекулярном и ионном виде уравнения реакций получения H_3PO_4 , $Fe(OH)_3$, $Cu(OH)_2$.

Солями называют сложные соединения, состоящие из основных и кислотных остатков.

Основные остатки представляют собой остатки оснований, если от них поочередно отнимать по одной группе OH^- . Например: $Mg(OH)_2$ - основание, $MgOH^+$ и Mg^{2+} - основные остатки.

Кислотные остатки представляют собой остатки кислот, если от них поочередно отнимать по одному иону H^+ . Например: H_3PO_4 – кислота; $H_2PO_4^{-}$, HPO_4^{-2} и PO_4^{-3} - кислотные остатки.

Контрольное задание: напишите формулы основных остатков $Fe(OH)_3$ и кислотных остатков H_2CO_3 и H_2S .

Соли часто рассматривают как продукты взаимодействия кислот и оснований (реакции нейтрализации). в зависимости от состава основных и кислотных остатков различают три типа солей: *нормальные* (или *средние*), *кислые* и *основные*.

В *нормальных солях* основные остатки не содержат гидроксид-ионов OH^- , а кислотные остатки не содержат ионов H^+ . Например: Na_2SO_4 , $BaCO_3$, $FeCl_2$.

В кислых солях кислотные остатки содержат водород. Например: NaHSO₄, Ca(HCO₃)₂. Кислые соли можно рассматривать как продукт неполного замещения в кислоте ионов H^+ ионами металла. Кислые соли образуются только многоосновными кислотами (основностью кислоты называют количество ионов H^+ , способных замещаться на основные остатки, в частности на катионы металлов). Названия таких солей составляют путем добавления к названию соответствующей нормальной соли приставок «гидро-» (если в составе аниона соли один атом водорода) или «дигидро-» (если в составе аниона соли два атома водорода). Например: Na_3PO_4 — фосфат натрия, Na_2HPO_4 — гидрофосфат натрия, Na_4PO_4 — дигидрофосфат натрия.

Основными называются соли, в которых основные остатки содержат группы OH^- , например: $(CuOH)_2SO_4$, $Al(OH)_2Cl$. Такие соли можно рассматривать как продукт неполного замещения в основании ионов OH^- кислотными остатками, не содержащими водород.

Основные соли образуются только многокислотными основаниями (кислотностью основания называют количество гидроксид-ионов OH^- , способных замещаться на кислотные остатки). Названия таких солей составляют путем добавления к названию соответствующей нормальной соли приставок «гидроксо-» (если в составе катиона соли одна группа OH^-) или «дигидроксо-» (если в составе катиона две группы OH^-). Например: $Al(NO_3)_3$ — нитрат алюминия, $AlOH(NO_3)_2$ — гидроксонитрат алюминия, $Al(OH)_2NO_3$ — дигидроксонитрат алюминия.

Многие соли получают при помощи кислотно-основных реакций, к которым относятся:

- взаимодействия оснований или основных оксидов с кислотами или кислотными оксидами:

```
a) Mg(OH)_2 + 2HCl = MgCl_2 + 2H_2O или Mg(OH)_2 + 2H^+ = Mg^{2+} + 2H_2O б) Mg(OH)_2 + CO_2 = MgCO_3 + H_2O в) MgO + H_2SO_4 = MgSO_4 + H_2O или MgO + 2H^+ = Mg^{2+} + H_2O
```

- взаимодействие кислых солей с основными или основных солей с кислыми:

а)
$$Mg(HSO_4)_2 + Mg(OH)_2 = 2MgSO_4 + 2H_2O$$
 или $2H^+ + Mg(OH)_2 = Mg^{2+} + 2H_2O$ б) $(MgOH)_2SO_4 + H_2SO_4 = 2MgSO_4 + 2H_2O$ или $MgOH^+ + H^+ = Mg^{2+} + H_2O$

Амфотерные оксиды и гидроксиды взаимодействуют как с кислотами, так и с основаниями:

a)
$$Zn(OH)_2 + H_2SO_4 = ZnSO_4 + 2H_2O$$
 или $Zn(OH)_2 + 2H^+ = Zn^{2+} + 2H_2O$ б) $Zn(OH)_2 + 2NaOH = Na_2ZnO_2 + 2H_2O$ или $Zn(OH)_2 + 2OH^- = ZnO_2^{2-} + 2H_2O$

При взаимодействии с кислотой амфотерный гидроксид выступает в роли основания $Zn(OH)_2$. При взаимодействии с основанием амфотерный гидроксид выступает в роли кислоты H_2ZnO_2 .