3. **Мнускина Ю.В., Шаповалов В.В., Шибико М.М.** Взаимодействие хлорида меди(I) с супероксидом натрия // Наукові праці ДонНТУ. Серія: Хімія і хімічна технологія, 2005. — Вип. 95. — С. 36–41.

- 4. Вольнов И.И. Перекисные соединения щелочных металлов.— М.: Наука, 1980. 160 с.
- 5. **Краткий справочник физико-химических величин.** / Под ред. А.А. Равделя и А.М.Пономаревой. Л.: Химия, 1983. 232 с.
- 6. **Шаповалов В.В.** Определение кинетических параметров интенсивных экзотермических твердофазных реакций // Укр. хим. журнал, 2000. Т. 66. № 7. С.31–36.

Ó Шаповалов В.В., Мнускина Ю.В., 2008

УДК 539.192:541.182

Горбань О.А. (Донецкий физико-технический институт им. А.А. Галкина НАН Украины),

Кулик Ю.О. (Львовский национальный университет имени Ивана Франко) **Кононенко Е.Г.** (ОАО Харцызский трубный завод)

Константинова Т.Е. (Донецкий физико-технический институт им. А.А. Галкина НАН Украины)

ВЛИЯНИЕ ОСНОВНОСТИ ОСАДИТЕЛЯ НА ХАРАКТЕРИСТИКИ НАНОЧАСТИЦ ГИДРОКСИДА ЦИРКОНИЯ

Методами дифференциальной сканирующей калориметрии (ДСК), рентгеновского рассеяния (МУРР). ИК спектроскопии озоволзуольм диффузного отражения проведено исследование поверхностных структурных характеристик нанопорошков ксерогелей системы ZrO_2 - xOH_2 использовании осадителей с разной сформированных при основностью NH₃×H₂O и N₂H₄×H₂O.

Введение

Многообразие областей применения нанопорошковых материалов на диоксида циркония предполагает создание материалов определенными функциональными свойствами [1-3], в том числе и для использования В виде дисперсной фазы: наполнителей полимерных материалов. катализаторов ИΧ носителей. При развитии И каталитических систем критическим является вопрос создания нанопорошков с хорошей морфологией, высокой удельной поверхностью и определенным фазовым составом. Оптимальное соотношение этих свойств достигается при синтезе нанопорошков методом осаждения труднорастворимых соединений [4-5]. К настоящему времени накоплен большой экспериментальный материал по исследованию условий синтеза оксидных нанопорошков на основе диоксида циркония на их структурные и функциональные свойства. При этом, как отмечают практически все исследователи, физико-химические свойства и структура получаемых материалов в значительной степени зависят как от условий осаждения (температуры, рН среды, концентрации реагирующих веществ), так и от природы реагентов-осадителей.

Целью данной работы является исследование влияния осадителей разной основности на структурные характеристики и состояние поверхности синтезируемых наночастиц ксерогеля $ZrO_2 - xHO_n$ (n = 1,2).

Экспериментальная часть

Гидроксид системы $ZrO_2 - xHO_n$ (n=1,2) был синтезирован методом обратного осаждения из раствора нитратной соли $ZrO(NO_3)_2 \cdot 8H_2O$. В качестве осадителей использованы основания с различной основностью (pK_b): гидразин гидрат $N_2H_4 \cdot H_2O$ (pK₁=6,07; pK₂=15,07) и аммония гидрат $N_3 \cdot H_2O$ (pK=4,75). Синтез проведен при переменном значении pH = 10 - 8. Нанопорошки ксерогеля получены сушкой гидроксида системы $ZrO_2 - xHO_n$ в CBЧ излучении с частотой 2,45 ГГц и мощностью 500 Вт.

Дифференциально-термические и термогравиметрические исследования проведены на приборе STA 409 фирмы NETZSCH в диапазоне температур 0–500°C с шагом подъема температуры 10°C.

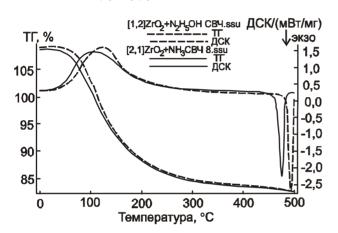
Для изучения структурной организации ксерогелей системы ZrO₂ - nH₂O использован метод малоуглового рентгеновского рассеяния (МУРР). Спектры отражения от плоскостей (111) совершенного монокристалла Ge получены в СuK_α.излучении на дифрактометре ДРОН-3. Для уменьшения зоны паразитного монокристалла-монохроматора перед образцом специальное щелевое устройство с перемещением ±4 мм перпендикулярно падающему пучку. Фон рассеяния воздухом ограничивался устройством, установленным перед детектором рентгеновского излучения. Использование совершенного монокристалла Ge и коллимационной системы первичного и рассеянного излучения позволило провести измерения, начиная с $2\theta = 0.2-0.3^{\circ}$. Щель перед детектором 0,1 $\Delta 2\theta = 0.16^{\circ}$ пространственное разрешение Регистрация интенсивности рассеяния проведена в режиме сканирования по точкам (угловой шаг 0,05°, время экспозиции 100 с). Поскольку в области самых малых углов рассеяния $(0.2-0.4^{\circ})$ на рассеянный пучок наложен ослабленный поглощением в образце пучок первичного излучения, из измеренной интенсивности интенсивность первичного пучка с учетом поглощения в образце:

$$I(2\theta) = I_{\text{exp}}(2\theta) - KI_{\text{o}}(2\theta)/\cos(2\theta) \tag{1}$$

где $I_{\rm o}(2\theta)$ — распределение интенсивности первичного пучка, $I_{\rm exp}(2\theta)$ — экспериментально измеренная интенсивность рассеяния, $1/\cos(2\theta)$ — множитель, учитывающий путь луча в образце в зависимости от угла рассеяния. Коэффициент поглощения определялся по формуле:

$$K = I(0)/I_0(0) (2)$$

где $I_0(0)$, I(0) — интенсивности первичного и рассеянного излучений в положении детектора $2\theta = 0^\circ$. Измерения проведены в диапазоне значений s от 0,1 до 2,55 нм⁻¹. Введение коллимационной поправки проведено, согласно методике, описанной в [6]. Экспериментальные спектры обработаны в пакете программ GNOM [7].


Фрактальная размерность рассеивающей области D_f была определена с помощью метода, описанного в [8], по наклону соответствующего линейного участка кривой рассеяния МУРР, представленной в координатах Ig(I(s))-Ig(s).

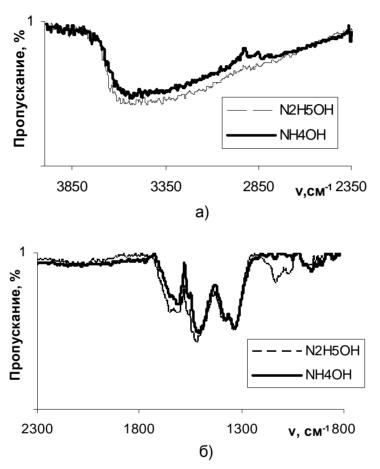
ИК спектры диффузного отражения нанопорошков были сняты в интервале $1000-4000~{\rm cm}^{-1}$ с разрешением 4 см $^{-1}$ на ИК-Фурье спектрометре «Tensor 27» фирмы «Bruker» с приставкой диффузного отражения.

Обсуждение результатов

Формирование нанопорошков диоксида циркония происходит в ходе сложных физико-химических процессов превращения гидроксид – ксерогель – оксид. При этом, уже на стадии синтеза гидроксида в системе происходит самоорганизация наноразмерных частиц, которая оказывает существенное морфологические характеристики получаемых ксерогелей. Структура ксерогеля достаточно сложна и ее можно можно представить в виде твердого каркаса, построенного из монодисперсных частиц с развитой оболочкой И пронизывающего его пористого пространства, гидратной сформированного во время сушки.

Известно, что структурная организация ксерогеля формируется в процессе его синтеза [9] и непосредственно связана с изменением состояния его гидратной оболочки. Структуру и состояние последней можно варьировать изменяя условия

Рис. 1. Спектры а) ДСК и б) ТГ ксерогелей, полученных при использовании разных агентов-осадителей


например, синтеза, природу агента-осадителя. Действительно исследование процессов дегидратации, методом сканирующей дифференциальной калориметрии (ДСК) показали. что для ксерогелей. синтезированных с использованием различных агентов-осадителей, спектры ДСК различны (см. рис.1). Так, в интервале температур $0 - 300^{\circ}$ С в спектрах ДСК этих систем наблюдается широкий эндотермический эффект, соответствующий процессам дегидратации адсорбционной и связанной воды [10].

Как видно из представленных данных для ксерогеля (осадитель $NH_3 \cdot H_2O$) максимум эндотермического эффекта приходится на $103^{\circ}C$ и его величина составляет 771 Дж/г. Тогда как для ксерогеля (осадитель $N_2H_4 \cdot H_2O$) эндоэффект несколько меньше — 768 Дж/г и его максимум сдвинут в сторону больших температур и проявляется при $124^{\circ}C$. Это свидетельствует о присутствии воды разной степени связности в гидратных оболочках исследуемых ксерогелей. При этом, использование в синтезе агента—осадителя $N_2H_4 \cdot H_2O$ с низкой основностью приводит к формированию ксерогелей с гидратной оболочкой, содержащей компоненты уход которых происходит при более высокой температуре.

Вместе с тем, данные термогравиметрического анализа (см. рис.1), свидетельствует о примерно равном содержании водной составляющей в этих ксерогелях. Так, при температурной обработке в диапазоне $0-500^{\circ}$ С происходит потеря массы на 23% (осадитель $N_2H_4\cdot H_2O$) и 22,5% (осадитель $NH_3\cdot H_2O$). Таким образом, изменением основности растворителя можно варьировать соотношение между компонентами разной степени связности, т.е регулировать структуру гидратной оболочки.

Отметим, что спектры ДСК исследованных ксерогелей имеют отличия и в области температур кристаллизации как в оценке теплового эффекта этого процесса (-96 Дж/г и -149 Дж/г), так и в температуре фазового перехода аморфный гидроксид -оксид циркония для ксерогелей, полученных с помощью осадителей $N_2H_4\cdot H_2O$ и $NH_3\cdot H_2O$, 492°C и 475°C соответственно.

Для выяснения природы компонентов, составляющих гидратную оболочку ксерогеля, и оценки соотношения между ними исследуемые ксерогели были изучены методом ИК Фурье спектроскопии диффузного отражения. На рисунке 2 приведен спектр ИК-спектры диффузного отражения просушенных при 120° С порошков исследуемых ксерогелей. Как видно из представленных данных ИК спектры диффузного отражения ксерогелей системы ZrO_2 - xOH_n , полученных с использованием осадителей N_2H_4 · H_2O и NH_3 · H_2O , имеют сложную структуру в области валентных и деформационных колебаний, связанную с присутствием нескольких типов гидроксогрупп и воды разной степени связности в гидратной оболочке.

Рис. 2. ИК спектры диффузного отражения ксерогелей, полученных с использованием различных агентов осадителей а) область валентных колебаний, б) область деформационных колебаний

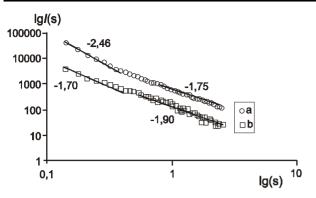
Как видно из представленных данных в области валентных колебаний ОН групп (v_s) (рис.1a) наблюдается широкая спектральная полоса 2500–3700 см⁻¹, при этом смещение валентных колебаний в низкочастотную область связано с возникновением водородной связи.

Объектом детального исследования и сопоставления была выбрана область деформационных колебаний ОН групп. Так, согласно имеющимся в литературе данным, в ИК спектре диапазон 1580–1680 см $^{-1}$ можно отнести к деформационным колебаниям адсорбированной воды, область 1500–1580 см $^{-1}$ к деформационным колебаниям гидроксильных групп связанных с металлом М-ОН (δ (МОН)), а область 1300–1400 см $^{-1}$ приписать колебаниям гидроксогрупп прочно связанных между собой водородной связью и структурированной гидроксилами воды γ (ОН) [11, 12]. Появление в ИК спектре широкой

слабоинтенсивной полосы в области 1800–2250 см⁻¹ свидетельствует о наличии в этих системах воды конденсированной в порах и на поверхности.

Отметим, что для исследуемых систем в ИК спектрах диффузного отражения проявляются колебания во всех перечисленных диапазонах. Это свидетельствует о том, что гидратная оболочка ксерогелей, полученных с использованием осадителей с различным значением р K_b , образована компонентами нескольких типов. Так, полоса при 1640 см⁻¹ соответствует колебаниям ОН групп адсорбированной воды, полосы при 1530 и 1570 см⁻¹ — терминальным ОН группам, включенным в слабую водородную связь, и полосы при 1335 и 1393 см⁻¹ — мостиковым ОН группам (двух- или трехкоординированные) и структурированной гидроксилами воды.

Метод аппроксимации гауссианами экспериментальных ИК-спектров диффузного отражения позволил выделить в области деформационных колебаний ОН групп вклады различных типов структурированной воды и гидроксилов в структуру гидратной оболочки ксерогеля. В таблице 1 приведены величины вкладов указанных диапазонов деформационных колебаний и результаты нормировки спектров отражения по полосе деформационного колебания δ (МОН) 1570 см⁻¹.


Таблица 1. Вклады (%) полос деформационных колебаний ОН групп воды и гидроксилов разной степени связности в ИК спектр диффузного отражения ксерогеля и результаты нормировки спектра отражения (N) по полосе деформационного колебания δ (МОН)

	Вклад % (N)	
Область ИК спектра	Агент осадитель	
	$N_2H_4\cdot H_2O$	NH ₃ ·H ₂ O
1300–1400 см ⁻¹	30,7 (0,68)	38,4 (0,9)
1500–1580 см ⁻¹	44,5 (1)	42 (1)
1580-1680 см ⁻¹	24,8 (0,55)	19,6 (0,47)

Эти данные находятся в согласии с данными ДСК о различном соотношении компонентов в структуре гидратных оболочек ксерогелей синтезированных из гидрогелей с использованием осадителей N_2H_4 - H_2O и NH_3 - H_2O . Как видно из приведенных данных, изменяется соотношение между вкладами в гидратную оболочку разных типов компонентов. Наблюдается уменьшение вклада в интегральную интенсивность полос пропускания в области деформационных колебаний терминальных гидроксилов и OH групп воды, связанных слабыми водородными связями для системы с осадителем NH_3 - H_2O .

Обратим внимание на появление широкого субмаксимума в ИК спектре диффузного отражения для системы с осадителем $N_2H_4\cdot H_2O$ с пиками при 1188, 1137, 1074 см⁻¹ в отличие от системы (осадитель $NH_3\cdot H_2O$). Эти полосы поглощения связывают с возникновением колебаний связи поверхностный катион – кислород различной прочности и положение этих полос зависит от дисперсности порошка и размера частиц [13]. Появление этих полос в спектре исследуемого гидроксида вероятнее всего свидетельствует об образовании прочносвязанных агрегатов частиц.

Отметим, что структуры исследуемых ксерогелей, хотя и являются в некотором смысле случайными, все же характеризуются определенной иерархией структуры и могут быть описаны в терминах фрактальной геометрии [8].

Рис. 3. Профили МУРР в координатах Ig(I(s))-Ig(s) для ксерогелей: a) осадитель $N_2H_4\cdot H_2O$, б) осадитель $NH_3\cdot H_2O$

На 3 представлены рисунке МУРР профили координатах la(I(s))-la(s)для исследуемых Как видно из привексерогелей. денных данных в исследуемом масштабном диапазоне, для изучаемых систем характерна множественность уровней пространственного строения рассеивающей области: на профилях MУPP в координатах lg(I(s))-lg(s)выделяются два участка, различающиеся характером угловой зависимости интенсивности излучения от величины волнового вектора s.

Первый участок отвечает диапазону значений координаты рассеяния s от 0,26 до 0,099 A^{-1} или в разрешении прямого пространства $L=2\cdot\pi/s$ от 2,4 до 6 нм. Второй участок — диапазону значений s от 0,06 до 0,01 A^{-1} или в разрешении прямого пространства $R=2\pi/s$ от 10 до 44 нм. Оцененные фрактальные размерности изучаемых ксерогелей на масштабном уровне до 6 нм позволяют трактовать исследуемые системы как массовые фракталы с размерностями 1,75 (осадитель $N_2H_4\cdot H_2O$) и 1,9 (осадитель $NH_3\cdot H_2O$). Фрактальные размерности на масштабном уровне выше 10 нм составляют 2,54 (осадитель $N_2H_4\cdot H_2O$) и 1,84 (осадитель $NH_3\cdot H_2O$), что также характеризует систему как массовый фрактал.

Как видно, изменение основности растворителя приводит к формированию ксерогелей с различной структурой двух масштабных уровней. Так, на масштабном уровне до 6 нм происходит некоторое снижение фрактальной размерности, а на втором масштабном уровне — существенное повышение фрактальной размерности системы, полученной с использованием прекурсора меньшей основности (N_2H_4 - H_2O). Образование более «плотной» структуры на втором масштабном уровне согласуется с выводами ИК Фурье спектроскопии диффузного отражения об образовании в этой системе более прочносвязанных агрегатов.

Выводы

Исследовано влияние основности осадителя на характеристики наночастиц диоксида циркония при сравнении действия аммиака ($NH_3 \cdot H_2O$), имеющего большую основность, чем гидразин гидрат ($N_2H_4 \cdot H_2O$).

Показано, что на состояние гидратной оболочки влияет природа осадителя. Так, при уменьшении основности осадителя наблюдается увеличение доли водной компоненты и усиление вклада в спектр связи поверхностный катион – кислород.

Обнаружено, что основность осадителя влияет на стуктурные характеристики синтезируемых наночастиц. Так, для гидроксидных частиц осажденных с помощью гидразин гидрата наблюдается большая степень связности структурных элементов, что выражается в большей величине фрактальной размерности на масштабном уровне 10–44 нм (по данным МУРР).

Литература

- 1. **Xin-Mei Liu, G.Q. Lu, Zi-Feng Yan** // Applied Catalysis A: General, 2005. V. 279. N. 1–2. P. 241–245.
- 2. **Ishizaki K., Komarneni S., Nauko M.** Porous Materials Process Technology and Applications. London: Kluwer, 1998.
 - 3. Танабе К. Катализаторы и каталитические процессы. М: Мир, 1993.

4. Croot Zevert W.T. M., Winnubst A.I.A, Theunissen G.S.A.M., Burggraat A.I. // J. Mater. Science. 1990. — V. 25. — P. 3449–3453.

- 5. **Шевченко В.Я., Хасанов О.Л., Jeong Yong Lee, Похолков Ю.П. и др**. // Физико-химия ультрадисперсных наносистем, 2003. С. 336–340.
 - 6. Щедрин Б.М., Фейгин Л.А. // Кристаллография, 1966. Т. 11. № 2. С. 159–163.
 - 7. **Svergun D.I., Semenyak A.V., Feigen L.A.** // Acta Cryst., 1988. A 44. P. 244–250.
 - 8. Олемской А.И., Флат А.Я. // УФН. -1993. Т. 163, №12. С. 1-88.
- 9. **Иванова А.С., Федотов М.А., Литвак Г.С., Мороз Э.М.** // Неорг. материалы, 2000. Т. 36. № 4. С. 440–446.
- 10. **Авдин В.В., Сухарев Ю.И., Лымарь А.А., Круглов А.А., Батист А.В.** // Изв. Челяб. науч. центра УрО РАН, 2005. № 3. С. 85–90.
 - 11. Плюснина И.И. Инфракрасные спектры минералов. М.: Изд-во МГУ, 1976. 175 с.
- 12. **Белоус А.Г., Пашков Е.В., Макаренко А.Н.** // Наносистемы, наноматериалы, нанотехнологии, 2003. Т. 1. С. 85–107.
- 13. **Давыдов А.А.** ИК-спектроскопия в химии поверхности окислов. Новосибирск: Наука, 1984. 244 с.

Ó Горбань О.А., Кулик Ю.О., Кононенко Е.Г., Константинова Т.Е., 2008

УДК: 669.017

Козлов Г.В., Буря А.И. (Днепропетровский государственный аграрный университет), **Чайка Л.В.** (ДонНТУ)

ФИЗИЧЕСКИЙ СМЫСЛ ВЗАИМОДЕЙСТВИЯ ГАЗ-ПОЛИМЕР В ПРОЦЕССЕ ДИФФУЗИИ: ФРАКТАЛЬНАЯ МОДЕЛЬ

Показано существенное влияние взаимодействий газ-полимер на процессы диффузии в полимерных мембранах и выяснен физический смысл этих взаимодействий. Предложенная фрактальная модель микрополостей свободного объема позволяет количественное описание такого влияния. Для полиэтилена появление взаимодействий газ-полимер при диаметрах молекул газа-пенетранта выше критического приводит к значительному снижению коэффициента диффузии.

Ранее что линейные было показано, зависимости характеристик газопереноса для полимеров (коэффициентов диффузии D или газопроницаемости P) как функция обратной величины диаметра молекулы газа-пенетранта $d_{\rm M}$ при некотором значении $d_{\rm M}$ обнаруживают резкое изменение наклона [1, 2]. Предполагается, что эта вариация наклона соответствует изменению механизма диффузии: переходу от структурного механизма к молекулярному и наоборот. При молекула газа-пенетранта не взаимодействует микрополостей свободного объема, через которые реализуется процесс диффузии, процесс протекает ПО структурному механизму, ДЛЯ которого контролирующей газоперенос размерностью D_n является фрактальная (хаусдорфова) размерность структуры $d_{\rm f}$. При увеличении $d_{\rm M}$ до некоторого критического значения наблюдается взаимодействие молекулы газа-пенетранта со стенками микрополости свободного объема, реализуется молекулярный механизм газопереноса и в качестве D_n принимается размерность областей локализации избыточной энергии D_f [2]. Поскольку для реальных полимеров $D_f > d_f$ то это приводит к увеличению наклона линейных зависимостей $D(1/d_{\rm M})$ в двойных логарифмических координатах (см. уравнение (1)). В свою очередь, переход от одного механизма диффузии к другому существенно влияет на величину D.