3. **Vysotsky Yu. B., Bryantsev V. S, Fainerman V. B.** Quantum Chemical Analysis of Thermodynamics of the Two-Dimensional Cluster Formation at the Air/Water Interface // J. Phys. Chem. B, 2002. — V. 106. — P. 121–131.

- 4. **Vysotsky Yu. B., Bryantsev V. S., Fainerman V. B.** Quantum Chemical Analysis of the Thermodynamics of 2D Cluster Formation of Odd n-Alcohols at the Air/Water Interface // J. Phys. Chem. B, 2002. V. 106. P. 11285–11294.
- 5. Vysotsky Yu. B., Bryantsev V.S., Fainerman V.B., Vollhardt D., Miller R. Quantum chemical semi-empirical approach to the thermodynamic characteristics of oligomers and large aggregates of alcohols at the water/air interface // Colloids and Surfaces, A: Physicochemical and Engineering Aspects 209 (2002). P. 1–14.
- 6. Vysotsky Y.B., Bryantsev V.S., Fainerman V.B. Thermodynamics of two-dimensional cluster formation at the water/air interface. A quantum chemical approach. // Progr. Colloid Polym. Sci., 2002. V. 121. P. 72–75.
- 7. Vysotsky Yu. B., Muratov D. V., Boldyreva F. L., Fainerman V.B., Vollhardt D. and Miller R. Quantum Chemical Analysis of the Thermodynamics of 2D Cluster Formation of n-Carboxy Acids at the Air/Water Interface // J. Phys. Chem. B, 2006. V. 110. P. 4717–4730
- 8. **Высоцкий Ю.Б., Беляева Е.А., Муратов Д.В.** Квантово-химический анализ димеризации н-тиоспиртов на поверхности раздела фаз вода/пар // Наукові праці Донецького національного технічного університету. Серія Хімія і хімічна технологія., 2006. Вип. 108(8). С. 23–34
- 9. **Daubert T. E., Danner R. P., Sibul H. M., Stebbins C. C.** Physical and thermodynamic properties of pure chemicals: Data Compilation, Part 1 Part 5; Taylor & Francis: Pennsylvania, 1998. 9860 p.
- 10. **Stull D. R., Westrum E. F.Jr, Sinke G.C.** The chemical thermodynamics of organic compounds. John Wiley and Sons, N.-Y, 1969. 536 p.
- 11. **Zwolinski B.J, Wilhoit R.** Heats of formation and heats of combustion in "American Institute of physics handbook" 3-rd edition by D.E. Gray. Mc. Graw-Hill. N.-Y., 1972. P. 4–342.
- 12. **Rihani D.N.** Thermodynamic data for n-Aminoalkanes // Hydrocarbon process., 1968. V. 47. № 2. P. 111–119.

Ó Беляева Е.А., Высоцкий Ю.Б., 2007

УДК539.19+536.722-13+541.66

Васильев А.О. (ДонНУЭТ), Высоцкий Ю.Б. (ДонНТУ)

ТЕОРИЯ ВОЗМУЩЕНИЙ В ТЕРМОДИНАМИЧЕСКИХ РАСЧЕТАХ. ЭНТАЛЬПИИ ОБРАЗОВАНИЯ МОНОЗАМЕЩЕННЫХ УГЛЕВОДОРОДОВ

Адекватность развитой ранее модели описания влияния заместителей энтальпии образования углеводородов [1-3] на проанализирована в свете новых экспериментальных данных и применения модели в рамках различных полуэмпирических методов (MINDO/3, MNDO, АМ1 и РМ3) квантовой химии. Вычислительный алгоритм модели адаптирован к среде программного комплекса МОРАС-97. Показано, что во всех рассмотренных схемах среднеквадратичная ошибка описания эксперимента около 4 кДж/моль.

В расчетах термодинамических молекулярных параметров (в том числе, и в первую очередь, энтальпий образования) наиболее широко используются различного рода аддитивные схемы, базирующиеся на выделении в рассматриваемой молекуле неких стандартизованных фрагментов, которым приписываются соответствующие инкременты [4–7]. Поскольку взаимодействие этих фрагментов между собой при этом не учитывается, то для достижения приемлемого согласия с экспериментом

приходится усложнять аддитивную схему, вводя все новые и новые инкременты.

В работах [1—3], продолжением которых является настоящая работа, для описания взаимодействия фрагментов молекулы (заместителя и остова) предложено использовать квантовомеханическую теорию возмущений. Предпосылкой использования теории возмущений является то обстоятельство, что изменение энтальпии образования (а, следовательно, и полной энергии системы) при введении в молекулу заместителя существенно меньше полной энергии системы. Тогда, применяя теорию возмущений, получаем хорошо известную формулу Коулсона–Лонге–Хиггинса, из которой следует

$$\Delta H_{f298} = \Delta H_{f298}^{0} + q_i^H \mathbf{A}_R + \frac{1}{2} \pi_{ii}^H \mathbf{A}_R^2 + \mathbf{B}_R$$
 (1)

где $\Delta H_{f\,298} - \Delta H_{f\,298}^{\,0}$ — изменение энтальпии образования молекулы при замещении атома водорода заместителем R; q_i^H и π_{ii}^H — остаточные самополяризуемости замещаемого атома незамещенной молекуле; B_R — аддитивная постоянная характеризующая энтальпию образования заместителя, а A_R — параметр, характеризующий возмущение. вносимое заместителем **УГЛЕВОДОРОДНЫЙ** рамках развиваемой незамещенной молекулы. В модели эффективное изменение электроотрицательности атома водорода, который замещается на ту или иную функциональную группу. Отметим, что расчет производится этом квантовохимический при только незамещенного субстрата, а энтальпии замещенной молекулы находятся на основе разработанной нелинейной корреляционной модели [3]. Подчеркнем, поляризуемостей матрицы самовзаимных являются И конечномерными функциями Грина невозмущенной системы, поскольку являются откликом системы на единичное локальное возмущение.

Теперь для описания энтальпии образования замещенных углеводородов необходимо знать экспериментальные значения энтальпий образования незамещенных молекул, заряды и самополяризуемости замещаемого атома водорода в незамещенном субстрате и константы $\boldsymbol{A}_{\scriptscriptstyle R}$ и $\boldsymbol{B}_{\scriptscriptstyle R}$ для данного заместителя, которые можно найти из наилучшего согласия с экспериментом. Затем можно использовать найденные значения параметров $\boldsymbol{A}_{\scriptscriptstyle R}$ и $\boldsymbol{B}_{\scriptscriptstyle R}$ при описании других замещенных систем.

Ранее [1–3] q_i^H и π_{ii}^H рассчитывались в рамках полуэмпирического метода MINDO/3 [8]. В настоящей работе развиваемая модель апробирована в полуэмпирических квантовомеханических методах MINDO/3, AM1, MNDO и PM3. Для вычисления самополяризуемостей в матричный элемент одноэлектронного гамильтониана, соответствующий замещаемому атому водорода, вводилось возмущение и изучался соответствующий отклик молекулы. Для этого в пакете MOPAC 97 был сделан модуль вводящий возмущение в гамильтониан -1, -0,5; 0,5; 1. Результаты расчета зарядов и самополяризуемостей представлены в таблице 1.

Таблица 1. Остаточные заряды q_i и самополяризуемости π_{ii} замещаемого атома водорода в незамещенных молекулах углеводородов

Метод	AM1		MNDO			//3	MINDO/3	
Молекула	$q_{\rm i}$ · 10^2	π_{ii} ·10 ⁴	$q_{\rm i} \cdot 10^2$	π_{ii} ·10 ⁴	$q_{i}\cdot 10^{2}$	π_{ii} ·10 ⁴	$q_{\rm i} \cdot 10^2$	$\pi_{ii} \cdot 10^4$
C ₂ H ₂	21,81	3,81	15,46	3,63	19,33	3,93	11,12	3,64
C ₂ H ₄	10,9	4,73	3,99	4,48	7,63	4,93	0,82	4,35
C ₆ H ₆	13,01	4,61	5,93	4,38	10,21	4,75	-0,73	4,45
CH ₄	6,65	4,90	-1,76	4,67	2,76	5,08	-0,96	4,21
C ₂ H ₆	7,06	4,99	-0,56	4,74	3,51	5,15	-2,54	4,41
C ₃ H ₈ -1	7,16	5,00	-0,57	4,74	3,75	5,14	-2,61	4,43
C ₃ H ₈ -2	7,64	5,09	0,46	4,81	4,57	5,20	-3,93	4,61
C ₄ H ₁₀ -1	7,15	5,00	-0,55	4,73	3,74	5,14	-2,58	4,43
C ₄ H ₁₀ -2	7,75	5,08	0,43	4,82	4,83	5,19	-4,06	4,63
C ₅ H ₁₂ -1	7,17	5,00	-0,55	4,73	3,76	5,13	-2,58	4,43
C ₅ H ₁₂ -2	7,74	5,09	0,45	4,82	4,81	5,19	-4,03	4,63
C ₆ H ₁₄ -1	7,17	4,99	-0,54	4,73	3,76	5,14	-2,57	4,43
C ₆ H ₁₄ -2	7,76	5,08	0,45	4,81	4,83	5,19	-4,02	4,64
C ₇ H ₁₆ -1	7,17	5,00	-0,54	4,73	3,76	5,13	-2,57	4,43
C ₇ H ₁₆ -2	7,76	5,08	0,45	4,82	4,83	5,19	-4,02	4,64
C ₈ H ₁₈ -1	7,17	5,00	-0,54	4,73	3,76	5,13	-2,57	4,43
C ₈ H ₁₈ -2	7,76	5,08	0,45	4,82	4,84	5,19	-4,01	4,64
C ₉ H ₂₀ -1	7,17	5,00	-0,54	4,73	3,76	5,13	-2,57	4,43
C ₉ H ₂₀ -2	7,76	5,09	0,45	4,82	4,84	5,19	-4,01	4,64
C ₁₀ H ₂₂ -1	7,17	4,99	-0,54	4,73	3,76	5,14	-2,57	4,42
C ₁₀ H ₂₂ -2	7,76	5,08	0,45	4,82	4,84	5,19	-4,01	4,64
C ₁₁ H ₂₄ -1	7,17	5,00	-0,54	4,73	3,77	5,13	-2,57	4,43
C ₁₁ H ₂₄ -2	7,76	5,08	0,45	4,82	4,84	5,19	-4,01	4,63
C ₁₂ H ₂₆ -1	7,17	5,00	-0,54	4,73	3,77	5,13	-2,56	4,45
C ₁₂ H ₂₆ -2	7,76	5,08	0,45	4,82	4,84	5,19	-4,01	4,64
C ₁₃ H ₂₈ -1	7,17	5,00	-0,54	4,73	3,77	5,14	-2,57	4,44
C ₁₃ H ₂₈ -2	7,76	5,08	0,45	4,81	4,84	5,19	-4,01	4,64
C ₁₄ H ₃₀ -1	7,17	5,00	-0,54	4,73	3,77	5,14	-2,56	4,44
C ₁₄ H ₃₀ -2	7,76	5,08	0,45	4,82	4,84	5,19	-4,01	4,64
C ₁₅ H ₃₂ -1	7,17	5,00	-0,55	4,73	3,77	5,14	-2,57	4,43
C ₁₅ H ₃₂ -2	7,76	5,08	0,45	4,81	4,84	5,19	-4,01	4,64

Как и следовало ожидать, заряды, вычисленные ранее [8] в рамках метода MINDO/3 (для изученных в этой работе систем), совпадают с результатами таблицы 1, тогда как величины самополяризуемостей несколько отличаются. Это связано с тем, что в работе [8] для вычисления самополяризуемости использована сетка из трех точек (2), тогда как в данной работе используется сетка из пяти точек(3).

$$\pi_{ii}(0) = \frac{1}{2}[q_i(1) - q_i(-1)] = q_i(0,5) - q_i(-0,5), \tag{2}$$

$$\pi_{ii}(0) = \frac{1}{6} [q_i(-1) - 8q_i(-0.5) + 8q_i(0.5) - q_i(1)].$$
 (3)

Из таблицы 1 видно, что в различных методах заряды отличаются друг от друга. Следовательно, можно предположить, что для различных заместителей разные методы будут с различной степенью точности описывать энтальпию образования. Используя одно- и двухфакторную регрессии для описания энтальпии образования, получим коэффициенты регрессии и корреляции, представленные в таблице 2.

Таблица 2. Параметры корреляционных зависимостей (1)

		Ma=a=	Опиофо	WTODUAG DOE	noccua		Прууд	DOLLTONIAG DOED	000140	
R		Метод		акторная рег	•	R		ракторная регр		R
	n	расчета	$A_R \pm S_A$,	$B_R \pm S_B$,	S ₀ ,		$A_R \pm S_A$	B _R ±S _B	S ₀	
		MINDO/3	629,7±347,4	*	8,24	0,50	1285,6±34,8	-732,8±38,9	1,39	0,99
NH ₂ 10	10	MNDO	472,9±42,2	-30,9±0,8	2,58	0,96	786,9±47,3	-323,0±35,1	1,06	0,99
	10	AM1	516,6±53,6	-70,3±4,3	2,96	0,95	811,5±123,7	-420,3±120,3	2,46	0,97
		PM3	475,2±37,8	-51,3±1,8	2,32	0,97	819,5±61,4	-409,5±54,1	1,13	0,99
		MINDO/3	128,3±24,4	76,3±1,2	3,20	0,89	143,1±28,5	67,5±3,6	3,09	0,90
	_	MNDO	124,7±15,2	72,4±0,9	2,19	0,95	139,75±18,3	63,1±2,93	2,11	0,96
i-C₃H ₇	7	AM1	133,7±18,6	62,4±2,1	2,46	0,94	155,2±24,17	48,67±6,08	2,38	0,94
		PM3	126,9±17,1	67,1±1,5	2,40	0,94	144,8±21,3	55,5±4,58	2,3	0,95
		MINDO/3	135,6±28,8	68,2±1,2	3,90	0,79	155,0±34,1	57,9±4,3	3,80	0,81
		MNDO	135,0±14,8	64,2±0,7	2,38	0,93	153,1±17,8	53,0±2,9	2,26	0,94
C ₃ H ₇	13	AM1	145,4±17,8	53,2±1,8	2,60	0,92	172,1±23,3	36,3±6,1	2,48	0,92
		PM3	137,6±15,9	58,4±1,2	2,49	0,92	159,4±19,9	44,4±4,4	2,36	0,93
		MINDO/3	153,9±23,0	46,6±0,9	3,00	0,90	174,3±27,4	33,6±4,0	2,88	0,90
		MNDO	135,7±11,4	40,0±0,9 42,7±0,7	1,81	0,96		31,9±2,2	1,75	0,97
C_2H_5	11					_	151,8±13,8			
		AM1	147,9±13,6	31,5±1,4	1,97	0,96	172,0±18,2	14,9±4,8	1,92	0,96
		PM3	138,3±12,7	36,9±1,9	1,97	0,96	158,1±16,0	23,3±3,5	1,89	0,96
		MINDO/3	117,2±30,9	27,9±1,2	4,41	0,69	134,6±36,2	20,2±3,8	4,31	0,70
CH ₃	16	MNDO	132,2±18,0	23,9±0,8	2,91	0,88	152,4±21,7	12,8±3,5	2,77	0,89
0.13		AM1	140,5±21,3	13,4±2,0	3,12	0,86	169,8±27,9	*	3,0	0,87
		PM3	135,6±18,8	18,1±1,3	2,94	0,87	159,5±23,5	*	2,80	0,89
		MINDO/3	540,0±267,4	198,4±7,2	6,1	0,71	960,4±83,2	-203,9±69,5	2,00	0,97
F	4	MNDO	315,6±31,4	181,0±0,9	1,69	0,98	416,9±48,0	98,5±19,3	1,40	0,99
	4	AM1	337,6±43,4	155,7±3,9	2,16	0,97	534,2±97,8	*	1,65	0,98
		PM3	308,0±36,3	168,2±2,2	1,99	0,97	426,5±63,3	69,6±30,8	1,67	0,98
		MINDO/3	-293,4±77,7	24,7±2,0	3,3	0,8	-285,6±51,2	*	2,8	0,86
CI 8		MNDO	**	31,4±2,1	5,43	-	**	30,8±2,7	5,42	-
	8	AM1	**	35,2±8,0	5,39	-	**	34,2±5,1	5,38	-
		PM3	**	32,4±4,9	5,45	_	**	32,1±2,8	5,45	_
	MINDO/3	-386,7±73,0	-26,0±2,0	3,13	0,87	-357,6±42,6	-82,4±14,6	2,51	0,92	
		MNDO	-114,5±85,7	-16,0±2,1	5,8	0,41	-119,0±74,4	-22,6±7,9	5,74	0,43
Br	9	AM1	-141,4±94,2	*	5,68	0,45	-143,1±76,6	-15,2±4,8	5,6	0,48
		PM3	-110,0±67,3	-11,1±4,1	5,58	0,48	-108,9±58,9	-17,1±3,8	5,53	0,49
		MINDO/3	-502,3±106,0	-85,3±2,7	2,42	0,40		-172,6±15,8	1,29	
		MNDO	-502,5±100,0 **	-65,3±2,7 -71,5±3	5,44	- 0,92	-445,0±37,5		5,37	0,98
1	4		400 4 - 404 0	-71,5±3 -61,2±9,5			-113,2±87,8	-77,5±8,6		0,51
		AM1	-136,1±104,9		5,22	0,54	-133,4±86,8	-70,2±4,6	5,13	0,57
		PM3	400.4 : 00.7	-66,8±6,1	5,40	-	-111,7±85,4	-73,2±5,6	5,34	0,51
		MINDO/3	-128,1±26,7	-137,6±1,2	3,40	0,86	-121,2±22,9	-143,9±2,7	3,32	0,87
CN	8	MNDO	-90,6±31,4	-134,6±1,9	4,68	0,71	-86,6±27,9	-138,1±2,1	4,65	0,72
		AM1	-101,2±33,2	-126,9±3,8	4,55	0,73	-95,1±28,6	-131,8±1,6		0,74
		PM3	-93,6±31,7	-130,6±2,8	4,62	0,72	-89,0±27,7	-134,9±1,7	4,58	0,73
		MINDO/3	-701,0±128,5	*	3,55	0,91	-546,2±40,0	-124,1±20,7	2,02	0,97
NO ₂	6	MNDO	**	24,9±3,6	8,38	-	**	*	8,32	-
1,102		AM1	**	35,5±13,4	8,17		**	25,6±8,7	8,06	-
<u></u>		PM3	**	29,1±8,2	8,37	_	**	23,9±8,0	8,32	_
		MINDO/3	509,0±204,0	151,4±5,1	7,82	0,67	1156,9±99,4	-430,2±100,2	3,26	0,95
		MNDO	361,7±88,2	137,0±2,4	5,82	0,84	653,5±213,0	*	5,09	0,88
OCH ₃	7	AM1	385,9±111,3	108,0±9,9	6,52	0,79	820,1±275,5	*	5,7	0,85
		DMO	050 0 404 0			0.00	1120,2±143,	FF0 4:470 4	4.50	
		PM3	356,0±101,8	122,3±5,9	6,48	0,80	6	-553,4±170,4	4,56	0,91
		MINDO/3	331,5±141,4	378,5±3,6	5,55	0,58	662,4±169,1	191,2±95,7	4,78	0,71
		MNDO	196,8±75,1	370,1±1,7	5,34	0,62	243,8±99,8	342,0±23,4	5,23	0,64
СООН 11	11	AM1	203,2±89,4	354,8±7,4	5,61	0,57	275,0±140,0	311,6±49,4	5,5	0,59
		PM3	185,8±82,4	362,4±4,3	5,62	0,56	248,0±140,0	332,3±31,6	5,53	0,58
		MINDO/3	-1224,2±63,8	118,2±2,1	1,72	0,98	-637,1±23,5	-46,4±14,3	1,79	0,98
		MNDO	1622,8±71,4	160,2±2,1	1,46	0,98	945,7±31,1	-40,4±14,3 -267,6±28,0	1,79	0,98
ОН	14*					_				
		AM1	2827,0±174,7	-51,9±12,9	2,02	0,97	1065,4±33,1	-492,3±37,9	1,67	0,98
	-	PM3	1496,4±89,7	95,1±3,8	1,96	0,98	1028,5±39,9	-431,2±44,0	1,69	0,98
		MINDO/3	-614,4±31,3	-53,6±0,9	0,58	0,98	-398,3±15,5	-118,3±6,0	0,60	0,98
SH	13*	MNDO	888,5±40,4	-33,0±0,2	0,52	0,99	594,5±19,0	-201,9±10,6	0,49	0,99
		AM1	1562,0±129,4	-149,6±9,4	0,92	0,96	734,6±27,2	-360,0±22,0	0,66	0,98
		PM3	850,6±81,1	-69,5±3,2	1,05	0,95	649,6±34,7	-278,8±24,6	0,78	0,97

Подчеркнем, что в ряде случаев (отмечены в табл. 2 звездочкой) величины свободного незначимы и необходимо использовать члена корреляции, проходящие через ноль. Используя формулы работы [3], мы провели соответствующие расчеты, представленные в табл. 2. Двумя табл. 2 отмечены регрессии, В которых В коэффициенты A_R. Естественно, что коэффициенты корреляции при этом не превышают 0,2. Этот факт, видимо, связан с малым объемом выборок и нуждается в дальнейшем изучении. Отметим, что в этих случаях чистоаддитивная схема дает более корректные результаты.

При этом для различных заместителей получаем следующие значения величин: $R=NH_2$ - $B_R=-30,0$ и $S_0=9,5$; $R=i-C_3H_7$ - $B_R=-75,7$ и $S_0=7,14$; $R=C_3H_7$ - $B_R=66,4$ и $S_0=6,45$; $R=C_2H_5$ - $B_R=45,3$ и $S_0=6,75$; $R=CH_3$ - $B_R=25,8$ и $S_0=6,08$; R=F - $B_R=185,1$ и $S_0=8,7$; R=CI - $B_R=31,0$ и $S_0=5,48$; R=Br - $B_R=-17,1$ и $S_0=6,4$; R=I - $B_R=-73,0$ и $S_0=6,22$; R=CN - $B_R=-137,3$ и $S_0=6,68$; $R=NO_2$ - $B_R=24,1$ и $S_0=8,68$; $R=OCH_3$ - $B_R=141,2$ и $S_0=10,7$; R=COOH - R=371,2 и R=141,2 и R

Как видно из таблицы 2, метод MINDO/3 наиболее адекватно описывает большинство представленных заместителей. Так, среднее стандартное отклонение для 15 заместителей различной природы, представленных в таблице, составляет для MINDO/3 — 3,10 кДж/моль, MNDO — 4,48 кДж/моль, AM1 — 4,57 кДж/моль, PM3 — 4,47 кДж/моль. Вместе с тем, для заместителей $i\text{-}C_3\text{H}_7$, $C_3\text{H}_7$, $C_2\text{H}_5$ и CH3 метод MINDO/3 имеет наибольшую стандартную ошибку и наименьший коэффициент корреляции из представленных четырех методов. Средние стандартные отклонения для этого класса заместителей соответственно равны для MINDO/3 — 1,98 кДж/моль, MNDO — 1,25 кДж/моль, AM1 — 1,37 кДж/моль, PM3 —1,31 кДж/моль.

Отметим, что производные метана в данные выборки не включались, т.к. во всех используемых в работе методах в случае метана существенно упрощается описание электронной структуры, которая определяется в основном симметрией задачи, В итоге, включение метана в расчет снижает коэффициент корреляции и повышает стандартное отклонение. Следует также отметить, что во всех перечисленных выше расчетах введение второго члена регрессии увеличивает коэффициент корреляции и уменьшает стандартную ошибку вычислений. Особенно наглядно это проявляется, например, для заместителей NH₂ или ОСН₃ в методе MINDO/3. При этом оказывается, что использование полученных корреляций для описания даже замещенных метана при учете самополяризуемостей в два раза уменьшает стандартное отклонение (см. табл. 3).

Отметим, что при рассмотрении молекул, содержащих подвижный атом водорода (заместители OH и SH) в выборку включены только алканы так, как в соединениях с ацетиленом, этиленом и бензолом возможны таутомерные превращения с участием атома водорода OH и SH-групп. Включение в выборку этилена и бензола приводит к увеличению стандартного отклонения, например, для метода MINDO/3 для R=OH - R =0,68 и S_0 =12,0 для линейной регрессии и R =0,72 и S_0 =11,4 кДж/моль для квадратичной регрессии. Подчеркнем, что в отличие от методов MNDO, AM1 и PM3 метод MINDO/3 дает отрицательные значения коэффициентов A_R , что противоречит электронной природе этих функциональных групп. Для электродонорных заместителей A_R должно быть

больше нуля, а для электроакцепторных — меньше. Увеличение объема выборки не приводит к изменению знака A_R . Что касается R=SH, то включение точек этилена и бензола приводит к положительности величины A_R , но при этом она становится незначимой. Все это свидетельствует о неадекватности выборки для данных заместителей и о необходимости расширения базы экспериментальных данных. Вместе с тем, несмотря на указанную не полную адекватность модели, как следует из табл. 3, развиваемая схема в случае замещенных алканов имеет прогностическую ценность и, следовательно, имеет право на существование.

В табл. 3, в качестве иллюстрации, представлены расчеты $\Delta H_{\rm f298}$ кДж/моль для 11 молекул и 6 заместителей различной природы по однофакторной регрессии (I) и двухфакторной регрессии (II), которые сопоставляются с имеющимися экспериментальными значениями. Источник экспериментальных данных указан в скобках.

Таблица 3. Расчет энтальпий образования замещенных углеводородов

Незамещ.	R=		NH ₂			C ₃ H ₇		F		
молекула	Метод расчета	I	II	Эксп.	I	II	Эксп.	I	II	Эксп.
CH ₄	MINDO/3	54,44	25,36	22,97 [12,20]	141,41	141,04		267,71	249,80	234,3 [9,19]
	MNDO	35,29	26,81		136,34	135,77		249,96	246,84	
	AM1	38,56	30,53		133,54	136,60		252,66	247,83	
	PM3	36,34	28,80		136,72	136,23		251,22	248,30	
0.11	MINDO/3	-170,73	-214,87		-143,46	-142,85	-144,4	31,70	11,95	-
	MNDO	-184,51	-203,20		-141,66	-141,54		3,07	-0,65	
C_2H_2	AM1	-184,37	-219,00	-	-144,18	-142,34		2,60	-3,33	
	PM3	-186,17	-213,63		-141,73	-141,52	[14,20]	1,01	-3,13	
	MINDO/3	-61,12	-55,17		17,02	17,33		150,54	153,15	- - -
СП	MNDO	-64,31	-66,27		17,29	17,32	21,3	141,31	140,77	
C_2H_4	AM1	-66,30	-72,58	-	13,31	16,42	[11,20]	140,19	139,04	
	PM3	-67,35	-68,31		16,60	16,78		139,40	139,48	
	MINDO/3	-101,45	-90,33		-15,66	-15,42		111,60	116,26	116,57 [14,20]
СП	MNDO	-85,73	-87,73	-86,86 [13,20]	-10,67	-10,52	-7,9	116,84	116,55	
C ₆ H ₆	AM1	-85,96	-93,69		-13,99	-10,95	[15,16]	116,75	116,42	
	PM3	-85,66	-89,69		-10,43	-10,13		116,77	116,67	
	MINDO/3	53,85	46,37	47,15 [12,19]	148,58	148,37	146,76 [14,20]	268,52	261,82	264,4 [14,20]
СП	MNDO	50,30	49,94		147,27	147,08		263,07	262,39	
C_2H_6	AM1	49,99	49,74		143,48	146,86		263,35	262,17	
	PM3	49,22	48,69		147,06	146,90		262,84	262,01	
	MINDO/3	76,27	71,13	70,5 [14,20]	169,78	169,63	166,94 [14,20]	290,73	285,45	281,2 [14,20]
$C \sqcup 1$	MNDO	70,50	69,04		167,94	167,70		283,49	282,48	
C_3H_8-1	AM1	71,03	70,16		164,49	167,89		284,33	282,90	
	PM3	70,59	69,59		168,06	167,89		284,03	283,10	
	MINDO/3	97,54	92,53	92	190,92	190,77	187,66 [14,20]	311,97	306,79	
C ₄ H ₁₀ -1	MNDO	91,60	90,44		189,05	188,82		304,60	303,67	
C ₄ П ₁₀ - I	AM1	92,39	91,56	[14,20]	185,58	188,94		305,61	304,23	_
	PM3	91,90	90,83		189,23	189,07		305,28	304,33	
	MINDO/3	86,20	106,11		188,48	188,52		302,24	309,99	
C ₄ H ₁₀ -2	MNDO	96,91	104,44	104,18	190,57	190,73	-	308,14	309,80	
	AM1	95,54	103,19	[14,20]	186,52	190,24		307,66	310,38	-
	PM3	97,45	104,37	[14,20]	190,84	191,08		308,87	310,39	
C ₅ H ₁₂ -1	MINDO/3	118,59	113,28	- 113 - [14,20]	211,91	211,76		333,01	327,67	
	MNDO	112,62	111,48		210,04	209,81	200.75	325,60	324,68	
	AM1	113,37	112,74		206,55	209,92	208,75 [15,20]	326,58	325,29	-
	PM3	112,90	111,97		210,21	210,05		326,26	325,36	1

Heering	R=	ОН				SH		CN		
Незамещ. молекула	Метод	1	II	Эксп.	1	II	Эксп.	- 1	II	Эксп.
, ,	расчета	•		Onom.			O NOTE:	-		OKCII.
C ₂ H ₆ -1	MINDO/3	233,02	232,55	234,95 [10,14]	45,78	45,55	46,3 [14,20]	-50,53	-50,54	-51,8 [14,20]
	MNDO	235,02	234,86		45,93	46,16		-50,28	-50,24	
02116	AM1	231,51	233,92		44,53	45,32		-50,22	-50,18	
	PM3	231,49	234,04		44,20	45,36		-50,07	-50,13	
	MINDO/3	254,83	254,70		67,12	67,03		-29,99	-29,97	- - 34,058 - [14,20]
C ₃ H ₈ -1	MNDO	255,64	255,46	255,2	66,65	66,88	67,5	-29,29	-29,27	
031 18-1	AM1	255,13	255,85	[10,20]	66,91	66,92	[14,20]	-29,40	-29,36	
	PM3	255,82	255,23		67,03	66,91		-29,31	-29,38	
	MINDO/3	271,00	270,57		75,23	75,21		-27,88	-27,67	- - 25,397 - [14,20]
C ₃ H ₈ -2	MNDO	272,40	272,12		75,83	75,74	76,23	-30,34	-30,21	
	AM1	268,80	271,11	- -	74,47	75,27	[14,20]	-29,95	-29,79	
	PM3	268,21	270,33		74,08	74,91		-30,20	-30,17	
	MINDO/3	275,55	275,56	274,6	88,03	88,00	87,8 [14,20]	-8,91	-8,89	-11,46 [14,20]
C L 1	MNDO	277,12	275,95		87,97	87,80		-8,18	-8,16	
C ₄ H ₁₀ -1	AM1	276,08	276,76	[10,15]	87,93	87,92		-8,34	-8,30	
	PM3	276,77	276,33		88,05	87,99		-8,24	-8,31	
	MINDO/3	293,70	293,21	292,9 [10,15]	97,14	97,11	96,232 [14,20]	-6,60	-6,38	
C ₄ H ₁₀ -2	MNDO	292,92	293,10		96,62	96,72		-9,20	-9,07	
C41 1 ₁₀ -2	AM1	293,04	293,15		97,31	97,08		-8,96	-8,78	
	PM3	293,17	293,20		97,38	97,34		-9,33	-9,30	
	MINDO/3	296,44	296,59		106,96	107,29		12,04	12,06	9,25 [14,20]
C ₅ H ₁₂ -1	MNDO	298,07	297,34	298,74	107,72	108,13	109,8 [14,20]	12,78	12,80	
	AM1	297,49	297,80	[10,20]	108,79	108,26		12,63	12,67	
	PM3	298,04	297,21		108,46	108,34		12,73	12,66	
C ₅ H ₁₂ -2	MINDO/3	314,22	313,92		117,89	117,92		14,32	14,54	
	MNDO	314,26	314,20	313,8 [10,17]	117,79	117,80	-	11,75	11,88	<u>-</u>
	AM1	313,73	314,21		118,12	118,07		12,03	12,20	
	PM3	313,83	314,17		118,17	118,26		11,66	11,69	

Из таблицы 3 вытекает, что предлагаемый метод расчета энтальпии образования позволяет рассчитывать не только различные классы углеводородов, но и учитывать позицию заместителя. Видно также, что регрессия, коэффициенты которой рассчитаны без экспериментальных данных по данному классу углеводородов, мало применима к их описанию (например, ошибка вычисления для бензола 16,3 кДж/моль и для этилена 22,64 кДж/моль в методе MINDO/3).

Вместе с тем подчеркнем, что представленная модель обладает такими преимуществами аддитивной схемы, как небольшое количество параметров q_i^H и π_{ii}^H , A_R и B_R ; простота расчета — используются только операции сложения и умножения. В тоже время в рамках развиваемого подхода учитывается природа незамещенной молекулы — заряды и самополяризуемости и природа заместителя — знак и величина А_R. Стандартное отклонение описания экспериментальных данных составляет в среднем около 4 кДж/моль, что не намного превышает погрешность эксперимента. К недостаткам модели следует стандартного отклонения модели зависимость экспериментальных данных. Коэффициенты регрессии чувствительны к случайным погрешностям исходных данных, в тоже время наличие выборки самосогласованных экспериментальных данных (полученных в одинаковых экспериментальных условиях) позволяет нивелировать влияние стандартных ошибок измерений. Следует также отметить, что самополяризуемостей в расчет энтальпии образования позволяет снизить стандартную ошибку регрессии для большинства из рассмотренных заместителей и для разных методов расчета зарядов и самополяризуемостей.

РАЗДЕЛ 1 RNMNX

Таким образом, развитая ранее модель описания влияния заместителей на энтальпии образования углеводородов [1-3] применима в рамках различных полуэмпирических методов (MINDO/3, MNDO, AM1 и PM3) квантовой химии. Вычислительный алгоритм модели адаптирован к среде программного комплекса МОРАС-97, что позволяет значительно снизить время расчета и унифицировать его результаты. Для различных полуэмпирических методов среднеквадратичная ошибка описания эксперимента составляет около 4 кДж/моль.

Литература

- 1. Высоцкий Ю.Б., Эйлазян Э.Г. К расчету энтальпий образования монозамещенных углеводородов // Теор. и эксперим. химия, 1991. — Т. 27. — № 5. — С. 633-637.
- 2. Высоцкий Ю.Б., Эйлазян Э.Г. Эффекты заместителей в химической термодинамике. Энтальпии образования замещенных углеводородов // Журнал физической химии, 1992. — T. 66. — C. 2870–2875.
- 3. Высоцкий Ю.Б., Эйлазян Э.Г. К оценке параметров многофакторных двухпараметрических нелинейных моделей химической термодинамики // Заводская лаборатория, 1993. — № 1. — С. 66-69.
 - 4. **Татевский В.М.** Строение молекул. М.: Химия, 1977. 512 с.
- Киреев В.А. Методы практических расчетов в термодинамике химических реакций. М.: Химия, 1975. — 535 с.
- 6. Рид Р., Праусниц Д., Дервуд Т. Свойства газов и жидкостей. Л.: Химия, 1982. 592 c.
- 7. Janz G.T. Thermodynamic properties of organic compounds. N.-Y., L., Acad. Press, 1967. — 249 p.
- 8. Высоцкий Ю.Б., Володарец В.В., Эйлазян Э.Г., Гутыря Л.С. Само- и взаимные поляризуемости атом-атом углеводородов в методе MINDO/3 // Теор. и эксперим. химия, 1995. — T. 31. — № 4. — C. 227–231.
- 9. JANAF Thermochemical Table. Third Edition, Ed. by W.W. Chase, C.A. Davies, I.R. Downey // J.Phys.Chem., 1985. — Ref. Data 14 (Supplement 1), 986p.
- 10. Wilhoit R.C., Zwolinski B.I. Physical and thermodynamic properties of aliphatic alcohols // J.Phys.Chem., 1973. — Ref. Data 2 (Supplement 1), 867p.
- 11. Chalk C.D., Hutley B.G., Mckenna I., Sims C.B., Williams I.I. Nonpotential energy (NPE) effects in organical chemistry reactions: development of a suitable force field // J.Amer.Chem.Soc., – Vol. 103. — P. 260–268.
- 12. Wagman D., Evans W., Parker V., Schumm R., Halow I., Bailey S., Churney K., Nuttall R. NBS Tables of chemical thermodynamic properties // J.Phys.Chem., 1982. — Ref. Data (Supplement 2), 598 p.
- 13. Draeger A.I., Harrison R.H., Good W.D. Chemical thermodynamic properties of molecules that undergo inversion 1. Aniline, Lethylamine, Cyclopropylamine and Cyclopentene // J.Chem.Thermo, 1983. — Vol. 15. — P. 367–372.
- 14. Stull D.R., Westrum E.F.Jr., Sinke G.C. The chemical thermodynamics of organic compounds. N.-Y., John Wiley&Sons, 1969. — 536 p.
- 15. Pedley J.B., Naylor R.D., Kirby S.P. Thermochemical data of organic compounds. London, Chaman and Hall, 1986. — 469 p.
- 16. Alberty R.A. Standard chemical thermodynamic properties of alkylbenzene isomer groups // J.Phys.Chem., 1985. — Ref. Data 14 (Supplement 1). — 579 p.
 17. **Bensan S.W.** Thermochemical kinetics. N.-Y., John Wiley&Sons, 1976. — 498 p.
- 18. JANAF Thermochemical tables NSRDS NBS. Ed. by D.R. Stull, Washington D.C., U.S. Department of Commerce, 1971.
- 19. Petrov V.M., Vredenski A.A. Thermodynamic functions of aliphatic amines II Ethylamine // Russ.J.Phys.Chem., 1971. —Vol. 45. — P. 753-759.
- 20. Daubert T. E., Danner R. P., Sibul H. M., Stebbins C. C. Physical and thermodynamic properties of pure chemicals: Data Compilation, Part 1 – Part 5; Taylor & Francis: Pennsylvania, 1998. — 9860 p.

Ó Васильев А.О., Высоцкий Ю.Б., 2007