Косолапов Ю.Ф.,

кандидат фізико-математичних наук, професор кафедри вищої математики ім. В. В. Пака, Ляшенко С. В.,

студент факультету економіки та менеджменту Донецький національний технічний університет. (м. Донецьк, Україна)

ДЕЛЬТА-ФУНКЦИЯ И НЕКОТОРЫЕ ЕЕ ПРИМЕНЕНИЯ

Дельта-функция (δ -функция) является одной из простейших обобщенных функций современной математики, которая успешно используется во многих прикладных исследованиях.

Пусть $\delta_{\varepsilon}(x)$ - некоторая непрерывная неотрицательная функция, которая тождественно равна нулю вне интервала $(-\varepsilon,\varepsilon)$ и график которой вместе с осью Ox образует криволинейную трапецию единичной площади. Пусть теперь f(x) - произвольная функция, непрерывная в некоторой окрестности точки x=0 (так называемая пробная функция). Если $\varepsilon \to +0$, то на основании второй теоремы о среднем получаем

$$\lim_{\varepsilon \to +0} \int_{a}^{b} f(x) \delta_{\varepsilon}(x) dx = \begin{cases} f(0), & 0 \in (a,b), \\ 0, & 0 \notin (a,b). \end{cases}$$

Истолкуем использованный предельный переход как результат стремления функции $\delta_{\varepsilon}(x)$ к некоторой экзотической функции $\delta(x)$ (δ -функции Дирака), которая определяется равенствами

$$\int_{a}^{b} f(x)\delta(x)dx = \begin{cases} f(0), & ecnu \quad 0 \in (a,b), \\ 0, & ecnu \quad 0 \notin (a,b). \end{cases}$$
 или
$$\int_{-\infty}^{\infty} f(x)\delta(x)dx = f(0).$$

Аналогично вводится δ -функция $\delta(x-x_0)$, устанавливаются некоторые связанные с δ -функцией формулы, в частности, формулы линейной замены переменной и дифференцирования.

Наряду с δ -функцией мы используем также единичную функцию Хевисайда I(t). Между нею и δ -функцией существует тесная связь

$$I(t) = \int_{-\infty}^{t} \delta(t')dt', \quad I'(t) = \delta(t)$$

(в смысле одинакового действия I(t) и $\delta(t)$ на пробную функцію).

Далее мы рассматриваем некоторые примеры применения дельта-функции в физике и теории вероятностей. Так, плотность массы m, сосредоточенной в одной точке $x=x_0$ оси Ox, равна $\gamma(x)=m\delta(x-x_0)$.

Охлаждение однородного тонкого стержня, теплоизолированного сбоку, описывается задачей Коши для одномерного уравнения теплопроводности. Применение δ -функции к известной формуле, дающей решение задачи, позволяет выяснить физический смысл решения как результата суперпозиции мгновенных тепловых источников.

Рассмотрим задачу о колебаниях однородной бесконечной струны

$$u'''_{tt} = a^2 u''_{xx}, \quad -\infty < x < \infty, \quad t > 0, \quad a > 0,$$

$$u(x,0) = f(x), \quad u'_t(x,0) = g(x).$$

Пусть струна выводится из состояния равновесия $(f(x)\equiv 0)$ за счет начальной скорости

$$u'_t(x,0) = g(x)\delta(x - x_0).$$

Решение

$$u = u(x, x_0, t) = \frac{1}{2a} \int_{x-at}^{x+at} g(\xi) \delta(\xi - x_0) d\xi =$$

$$= \begin{cases} \frac{1}{2a} g(x_0), & x - at < x_0 < x + at, \\ 0, & x_0 < x - at, & x_0 > x + at. \end{cases}$$

получаемое из известной формулы Даламбера, трактуется как результат действия импульса, который получила струна в начальный момент благодаря начальной скорости, сообщенной ей в точке $x_{\scriptscriptstyle 0}$, а колебания струны – как результат суперпозиции импульсов.

В качестве примеров применения дельта-функции в теории вероятностей мы рассматриваем обобщение понятия плотности распределения на случай дискретной случайной величины, нахождение плотности распределения функции случайной величины и некоторые другие вопросы.