

704 Секция 12. Финишная прямая- секция аспирантов

Информационные управляющие системы и компьютерный мониторинг (ИУС КМ 2013)

УДК 681.3

RESEARCH OF COMPUTER NETWORK PROTOCOLS USING NS-2

SOFTWARE SIMULATIONS

Saif Talib Albasrawi, Yuri Ladyzhensky

Donetsk National Technical University, Donetsk, Ukraine

Department of Computer Engineering

Abstract

Saif Talib , Yuri Ladyzhensky . Research of Computer Network Protocols Using

NS-2 Software Simulations . The NS-2 simulator covers a very large number of

applications, protocols, network types, network elements and traffic models. The goal of

our papers to learn how to use NS simulator and to become acquainted with and

understand the operations of some of the simulated objects using NS simulation.We focus

on the analysis of the behavior of the simulated objects using NS simulation.

Keywords: Simulation, NS-2, Network, protocol

Introduction. NS is an event driven network simulator developed at UC

Berkeley that simulates variety of IP networks. It implements network protocols

such as TCP and UPD, traffic source behavior such as FTP, Telnet, Web, CBR and

VBR, router queue management mechanism such as Drop Tail, RED and CBQ,

routing algorithms such as Dijkstra, and more... NS also implements multicasting

and some of the MAC layer protocols for LAN simulations.

NS simulator is based on an object oriented simulator, written in C++, and a

OTcl (an object oriented extension of Tcl) interpreter, used to execute user’s

command scripts[6-9]. For efficiency reason, NS separates the data path

implementation from control path implementations. In order to reduce packet and

event processing time (not simulation time), the event scheduler and the basic

network component objects in the data path are written and compiled using C++.

These compiled objects are made available to the OTcl interpreter through an OTcl

linkage that creates a matching OTcl object for each of the C++ objects and makes

the control functions and the configurable variables specified by the C++ object act

as member functions and member variables of the corresponding OTcl object.

Tracing Objects. NS simulation can produce both the visualization trace (for

NAM) as well as an ASCII file trace corresponding to the events registered at the

network. When we use tracing NS inserts four objects in the link: EnqT, DeqT,

RecvT and DrpT, as indicated in figure 1.

Figure 1: Tracing objects in a simplex link

Секция 12. Финишная прямая- секция аспирантов

Информационные управляющие системы и компьютерный мониторинг

EnqT registers information concerning a packet that arrives an

the input queue of the link. If the packet overflows then information

dropped packet are handled by DrpT. DeqT registers information at

packet is dequed. Finally, RecvT gives us information about packets

received at the output of the link. NS allows us to get more in

through the above tracing. One way is by using queue monitoring.

Structure of trace files. When tracing into an output ASCII f

organized in 12 fields as follows in figure 2.

Figure 2: Fields appearing in a trace file

Packet. A NS packet is composed of a stack of headers, and a

space (see figure 3).A packet header format is initialized when a Sim

created, where a stack of all registered (or possibly useable) heade

common header that is commonly used by any objects as needed, I

header, RTP header (UDP uses RTP header) and trace header, is d

offset of each header in the stack is recorded.

Figure 3. NS Packet Format

Description and simulation of TCP/IP. TCP (Transport Contr

the transport protocol that is responsible for the transmission of arou

705705

ниторинг (ИУС КМ 2013)

 and is queued at

on concerning the

 at the instant the

ets that have been

 information than

I file, the trace is

d an optional data

imulator object is

ders, such as the

, IP header, TCP

 defined, and the

ntrol Protocol) is

round 90% of the

706 Секция 12. Финишная прямая- секция аспирантов

Информационные управляющие системы и компьютерный мониторинг (ИУС КМ 2013)

Internet traffic.Understanding TCP is thus crucial for dimensioning the Internet.

Although TCP is already largely deployed, it continues to envolve.

Objectives of TCP and window flow control.

TCP has several objectives:

• Adapt the transmission rate of packets to the available bandwidth,

• Avoid congestion at the network,

• Create a reliable connection by retransmitting lost packets.

In order to control the transmission rate, the number of packets that have not

yet been received (or more precisely, for which the source has not obtained the

information of good reception) is bounded by a parameter called a congestion

window. We denote it by W(cwnd in the TCP code),this means that the source is

obliged to wait and stop transmissions the number of packets that it had transmitted

and that have not been”acknowledged” reaches W. In order to acknowledge packets

and thus to be able to retransmit lost packets each transmitted packet has a sequence

number.

Acknowledgements .The objectives of Acknowledgements (ACKs) are:

• Regulate the transmission rate of TCP, ensuring that packets can be

transmitted only when other have left the network.

• Render the connection reliable by transmitting to the source information it

needs so as to retransmit packets that have not reached the destination.

The ACK tells the source what is the sequence number of the packet it

expects.A TCP packet is considered lost if three repeated ACKs for the same

packets arrive at the source1, or when a packet is transmitted, there is a timer that

starts counting. If its ACK does not arrive within a period T0, there is a “Time-Out”

and the packet is considered to be lost. Retransmitting after three duplicated ACKS

is called ”fast retransmit”. How to choose T0? The source has an estimation of the

average round trip time RTT, which is the time necessary for a packet to reach the

destination plus the time for its ACK to reach the source. It also has an estimation of

the variability of RTT. T0 is determined as follows:

� = ��������� + ��

Where ��������� is the current estimation of RTT, and D is the estimation of the

variability of RTT. In order to estimate RTT, we measure the difierence M between

the transmission time of a packet and the time its ACK returns. Then we compute

��������� ← 	 ∗ ��������� + (� −)� ,

� ← 	� + (� −)|��������� − �|

In order to decrease the number of ACKs in the system, TCP frequently uses

the "delayed ACK” option where an ACK is transmitted for only every d packets

that reach the destination. The standard value of d is 2. However, delaying an ACK

till d > 1 packets are received could result in a deadlock in case that the window size

707Секция 12. Финишная прямая- секция аспирантов 707

Информационные управляющие системы и компьютерный мониторинг (ИУС КМ 2013)

is one.Therefore, if the first packet (of an expected group of d packets) arrives at the

destination, then after some time interval (typically 100ms) if d packets have not yet

arrived, then an acknowledgement is generated without further waiting.

Dynamic Congestion Window. Since the beginnings of the eighties, during

several years, TCP had a fixed congestion window. Networks at that time were

unstable, there were many losses, large and severe congestion periods, during which

the throughputs decreased substantially; there were many packet retransmissions and

large delays. In order to solve this problem, it was proposed [1] to use a dynamic

congestion window: its size can vary according to the network state. When the

window is small, it can grow rapidly, and when it reaches large values it can only

grow slowly. When congestion is detected, the window size decreases drastically.

This dynamic mechanism allows resolving congestion rapidly and yet using

efficiently the network’s bandwidth.

Losses and a dynamic threshold Wth. Not only W is dynamic, Wth is too. It is

fixed in TCP to half the value of W when there has been a packet loss. There are

several variants of TCP. In the first variant, called ”Tahoe”, whenever a loss is

detected then the window reduces to the value of 1 and a slow-start phase begins.

This is a drastic decrease of the window size and thus of the transmission rate. In the

other mostly used variants, called Reno or New-Reno, the window drops to 1 only if

the loss is detected through a time-out. When a loss is detected through repeated

ACKs then the congestion window drops by half. Slow start is not initiated and we

remain in the”congestion avoidance” phase.

Initiating a Connection. To initiate a TCP connection, the source sends a "

sync” packet to the destination. The destination then sends an ACK called” sync

ACK”. When receiving this ACK, TCP can start sending data.If either of these

packets is lost then after a time-out expires (usually 3 or 6 seconds) then it is

retransmitted. When a retransmitted packet is lost, the time-out duration doubles and

the packet is sent again.

Figure 4:NAM graphic interface

708 Секция 12. Финишная прямая- секция аспирантов

Информационные управляющие системы и компьютерный мониторинг (ИУС КМ 2013)

Comparison of the throughput of TCP versions.We have done simulation of

TCP versions (Tahoe ,Reno ,New-Reno and Vegas) respectively using TCL scripts

for them to extract the throughput of each one of them, this network consist of 4

nodes(n0,n1,n2,n3) as shown in above figure 4,which is drawn by NAM software.

The duplex link between n0 and n1 has 2Mbps of bandwidth and 10 millisecond of

delay ,the simplex link between n1 and n2 forward and backward has 0.3Mbps of

bandwidth and 100 millisecond of delay, The duplex between n2 and n3 has

0.5Mbps and 40 millisecond of delay. Each node uses a Drop Tail queue of which

the maximum size is 20, the whole simulation duration is 100 second and “TCP” is

set to start at 1.0 second and stop at 99.0 second. The ‘TCP” agent is attached to n0

and a connection is established to TCP “Sink” agent attached to n3 , The maximum

size of packet that a “TCP” agent can generate is 552 Byte, a TCP “Sink” agent

generates and send ACK packets to the sender “TCP agent” and frees the received

packets . We obtain an output file with the averaged received throughput of TCP (in

bytes per second) as a function of time in node n3 “Sink” agent. where in our

example each 1 second a new value of the throughput is obtained. In order to

understand better the behavior of the system, we also plot the window size of each

one of them by using Gnuplot software. Finally, we found that Vegas is more

throughput from others as illustrated in table 1.

Table 1: The throughput of TCP versions

Tahoe. The problem with it is that it takes a complete timeout interval to detect

a packet loss, and in fact, in most implementations it takes even longer because of

the coarse grain timeout. Also since it doesn’t send immediate ACK’s, it sends

cumulative acknowledgements, thus every time a packet is lost it waits for a

Timeout and the pipeline is emptied. This offers a major cost in high band-width

delay product links as shown in figure 5. We see from figure 6 that from time 8.19

onwards a steady-state cyclic regime of TCP is attained,TCP is always in congestion

avoidance, and its window size increase (almost linearly) until congestion occurs,

Before time 8.19 we see a transient behavior in which TCP is in the slow-start phase,

At time 3.7 there are losses at the slow-start phase, A packet loss is taken as a sign

of congestion and Tahoe saves the half of the current window(80) as a threshold

value(40),and it then set congestion window(CWD) to 1,and then starts slow-start

phase until it reaches the threshold value. and at time 7.5 it found packet loss ,so

again it save the half of the current window(40) as a threshold value(20),and it then

Type of TCP

version

Number of Packets(Throughput)

Tahoe 5417

Reno 5941

New-Reno 5962

Vegas 6519

709Секция 12. Финишная прямая- секция аспирантов 709

Информационные управляющие системы и компьютерный мониторинг (ИУС КМ 2013)

set congestion window to 1, then start slow-start phase until it reaches the threshold

value, After that it increments linearly until it encounters a packet loss and so on.

 Figure 5:Throughput of TCP Tahoe Figure 6:Window size of TCP Tahoe

Reno. It Performs very well over TCP when the packet losses are small as

depicted in figure 7. But when we have multiple packet losses in one window then

RENO doesn’t perform too well and its performance is almost the same as Tahoe

under conditions of high packet loss. The reason is that it can only detect a single

packet loss. If there is multiple packet drops then the first info about the packet loss

comes when we receive the duplicate ACK’s. But the information about the second

packet which was lost will come only after the ACK for the retransmitted first

segment reaches the sender after one RTT.

We see from figure 8 that from time 7.3 onwards a steady-state cyclic regime

of TCP is attained,TCP is always in congestion avoidance, and its window size

increase (almost linearly),Before time 7.3 we see a transient behavior in which TCP

is in the slow-start phase, At time 3.7 there are losses at the slow start phase, Reno

save the half of current window(80)as a threshold value(40) and also set CWD to the

same value and then slow-start phase until reach to the lost packet and so on.

 Figure 7:Throughput of TCP Reno Figure 8:Window size of TCP Reno

710 Секция 12. Финишная прямая- секция аспирантов

Информационные управляющие системы и компьютерный мониторинг (ИУС КМ 2013)

New-RENO. It is a slight modification over TCP-RENO. It is able to detect

multiple packet losses and thus is much more efficient that RENO in the event of

multiple packet losses. Like Reno, New-Reno also enters into fast-retransmit when it

receives multiple duplicate packets, however it differs from RENO in that it doesn’t

exit fast-recovery until all the data which was out standing at the time it entered fast-

recovery is acknowledged, but New-Reno suffers from the fact that its take one RTT

to detect each packet loss as shown in figure 9. When the ACK for the first

retransmitted segment is received only then can we deduce which other segment was

lost .We see from figure 10 that New-Reno like Reno, but it doesn't exit fast-

recovery until all the data which was out standing at the time it entered fast-recovery

is acknowledged.

 Vegas. It is better because it is much more robust in the face of lost

packets. It can detect and retransmit lost packet much sooner than timeouts in ,and it

doesn’t have to always wait for 3 duplicate packets so it can retransmit sooner, and

its congestion avoidance mechanisms to detect ‘incipient’ congestion are very

efficient and utilize network resources much more efficiently as shown in figure 11.

As illustrated in figure 12, Vegas builds on the fact that proactive measure to

encounter congestion are much more efficient than reactive ones.TCP Vegas is

different from them in its behavior during congestion avoidance. It does not use the

loss of segment to signal that there is congestion. It determines congestion by a

decrease in sending rate as compared to the expected rate.

Figure 9:Throughput of

TCP

 New Reno

Figure 10:Window size of

TCP New Reno

711Секция 12. Финишная прямая- секция аспирантов 711

Информационные управляющие системы и компьютерный мониторинг (ИУС КМ 2013)

Conclusion. The purpose of this paper is to give a new use some basic idea of

computer network protocols and how the simulator works, how to create new

network components, etc., mainly by giving simple examples and explanations

based on our experiences, this research proves that TCP(Vegas) has better

throughput with Tahoe, Reno and New-Reno which is useful for the research of

network protocols and integrating their advantages .

References

1. V.Jacobson. “Congestion Avoidance and Control”.SIGCOMM

Symposium no Communication Architecture and protocols.

2. V.Jacobson “Modified TCp Congestion Control and Avoidance

 Algorithms ” .Technical.

3. S.Floyd, T.Henderson “The New-Reno Modification to TCP’s Fast

Recovery Algorithm” RFC 2582.

4. L. S. Brakmo, L.L. Peterson, “TCP Vegas: End to End Congestion

Avoidance on a Global Internet”, IEEE Journal on Selected Areas in

Communication.

5. NS by Example , Jae Chung and Mark Claypool ,http://nile.wpi.edu/NS/

6. E.Altman,”A stateless approach for improving TCP performance using

Diffserv” .

7. E.Altman and T.Jimenez,” Improving TCP over multihop networks using

delayed ACK” .

8. W. Noureddine and F. Tobagi, “improving the Performance of

Interactive TCP Applications using Service Differentiation” , Proceedings of

IEEE Infocom, New-York ,USA ,June 2001

9. P. Pieda, J. Ethridge, M.Baines and F. Shallwani, “A network simulator

differentiated services implementation “ , Open IP, Nortel Networks.

Figure 11:Throughput of TCP

 Vegas

Figure 12:Window size of TCP

 Vegas

