
ISSN 1063�7834, Physics of the Solid State, 2013, Vol. 55, No. 3, pp. 556–558. © Pleiades Publishing, Ltd., 2013.
Original Russian Text © V.V. Malashenko, N.V. Belykh, 2013, published in Fizika Tverdogo Tela, 2013, Vol. 55, No. 3, pp. 504–506.

556

One of the methods of designing new functional
materials that combine a high strength with a high
plasticity is the processing under a high hydrostatic
pressure [1–4]. As is known, the mechanical proper�
ties of a crystal are determined to significant degree by
the existence and motion of dislocations [5]. A dislo�
cation itself undergoes during its motion a strong
influence of potential barriers induced by structural
defects; a moving dislocation can surmount the barri�
ers by two methods, namely, due to thermal fluctua�
tions when the dislocation kinetic energy is lower than
the barrier height and dynamically (overbarrier slip) in
the opposite case; the latter is commonly realized at
rates of dislocation motion of 10–2c and higher (c is the
velocity of propagation of transverse acoustic waves in
a crystal) [6]. During the dynamic dislocation motion
in the field of other structural defects, its kinetic
energy is irreversibly transformed into the energy of
dislocation vibrations in the slip plane. The dynamic
drag force appeared during the process is dependent
on both the interaction of a dislocation with defects
and it vibrational spectrum [7–10]. In [11], the influ�
ence of the hydrostatic compression on the dynamic
drag of moving dislocation pairs by pinned individual
dislocations and also on the drag of individual disloca�
tions by dislocation dipoles was studied. In [12], the
dynamic drag of moving dislocation pairs by point
defects in a crystal subjected to hydrostatic compres�
sion was analyzed. In that work, the effect of pressure
on the interaction between dislocations forming pairs
was taken into account, which, as a result, led to
renormalization of the spectrum of dislocation vibra�
tions in the case when the interaction between disloca�

tions themselves influences predominantly the shape
of this spectrum. The effect of hydrostatic compres�
sion on the interaction of point defects with disloca�
tions was not taken into account in [12]; however, as is
shown in what follows, it can be very substantial in a
number of practically important cases.

The aim of this work is to theoretically study the
specific features of the dynamic dislocation drag by
point defects and the transformation of the dislocation
vibrational spectrum as a result of an increase in the
interaction of defects with a dislocation under hydro�
static compression.

Let an infinite edge dislocation to move under
action of the external stress σ0 at a constant rate v in
the field of point defects that are randomly distributed
over the volume of a hydrostatically compressed crys�
tal. The dislocation line is parallel to the OZ axis, and
the Burgers vector of the dislocation is parallel to the
OX axis, so that the dislocation slips in the positive
direction of this axis. The dislocation position is deter�
mined by function X(z, t) = vt + w(z, t), where w(z, t)
is a random variable whose average value over the
ensemble of defects and arrangement of dislocation
elements is zero.

The dislocation motion is described by the equa�
tion
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Here,  is the stress tensor component induced by
point defects in the dislocation line in a hydrostatically
compressed crystal;  is the mass of the unit disloca�
tion length;  is the velocity of propagation of trans�
verse acoustic waves in the crystal (the tilde indicates
that the corresponding values are taken for the hydro�

statically compressed crystal);  is the damping coef�

ficient;  = B/ ; and B is the damping constant
determined primarily by the phonon dissipation
mechanism. As is shown in [13], the influence of these
dissipation mechanisms on the drag force induced by
the field of randomly distributed defects is insignifi�
cant because of the smallness of the dimensionless

parameter γ = , where r0 is the cutoff parame�

ter (r0 ≈ b). Since, in order of magnitude, B ≤ 10–4 Pa s,
and the linear density of the dislocation mass m ≈

10⎯16 kg/m, we obtain  ≤ 1012 s–1. With typical values
r0 ≈ b ≈ 3 × 10–10 m, c ≈ 3 × 103 m/s, and v ≤ 10–1c, we
find that γ � 1. This estimation performed for crystals
not subjected to hydrostatic compression also is valid
for our case, since the hydrostatic pressure does not
change the orders of the values used here. Because of
this, when calculating the dislocation drag force by
defects, we, as in [7–13], neglect the influence of
phonon and other dissipation mechanisms contribut�
ing to the damping constant B and consider the damp�

ing coefficient  as an infinite small quantity that pro�
vides the convergence of the integrals obtained.

In [14–16], it was shown that the elastic field of
defects, among them point defects, in a hydrostatically
compressed crystal can be described by the same
expressions that are used for a crystal not subjected to
compression; however, in this case, the elastic moduli
must be replaced by the renormalized expressions
obtained in [14–16] and containing in an explicit form
the dependence on the hydrostatic pressure p. In par�

ticular, in the case Ω =  � 1 (where λ and μ

are the Lamé coefficients), according to [16], the
stress tensor of point defects in the hydrostatically
compressed crystal can be represented as

(2)

where σxy is the stress tensor in the crystal not sub�
jected to hydrostatic compression; and m and n are the
Murnaghan coefficients.

As was done in [7, 17, 18], the point defects are
considered as dilatation centers with a smoothly cut
stress fields at the distances of an order of the defect
radius R; because of this
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Using the method developed in [7–10, 17, 18], we cal�
culate the dynamic dislocation drag by point defects
by formula

(4)

where ω(qz) is the dispersion law of dislocation vibra�
tions; and  is the point defect concentration.

Using the standard procedure of the Fourier trans�
form and going to the system of the dislocation center
of masses, we obtain the dispersion law in an explicit
form

(5)

where 

(6)

Here,  is the dimensional concentration of point

defects,  = .

As is known, the dynamic interaction of defects
with a dislocation in the dependence on the disloca�
tion slip rate can have both the collective character and
the character of independent collisions [7, 17, 18]. To
remember the sense of these concepts, denote the time
of the interaction of a dislocation with a point defect as
tdef = R/v, the propagation time of a perturbation
along the dislocation at the distance on an order of the
average distance between defects as tdis = l/c, where l is
the average distance between defects. In the region of
the independent collisions v > vd = RΔ, the inequality
tdef < tdis is obeyed, i.e., a dislocation element does not
undergo the influence of other defects. In the region of
the collective interaction (v < vd), conversely, tdef > tdis;
i.e., for the time of interaction of a dislocation with a
defect, the dislocation element has time to feel the
influence of other defects that cause the perturbation
of the dislocation form. At high (v > vd) and low (v <
vd) rates, the character of the dislocation drag are sub�
stantially different.

It follows from Eq. (6) that, in a hydrostatically
deformed crystal, the critical rate determining the
boundary between these regions, also will be depen�
dent on the hydrostatic pressure

(7)

Performing the calculations, we obtained that, in the
region of independent collisions (v > vd), the disloca�
tion drag force due to point defects is determined by
the expression
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In the region of collective interaction, the dependence
of this force on the hydrostatic pressure is significantly
weaker:

(9)

We perform numerical estimations of the effect
under study for a pressure of 109 Pa. According to [14–
16], the constants entering into the formulas obtained
at such a pressure are insignificantly changed; thus,
the main dependence on the hydrostatic pressure is
determined by the factor (1 + αp). To estimate the
degree of the influence of hydrostatic pressure on the
quantities under study, we used the data from [19, 20].
Thus, in the aluminum�based D54S alloy, the
increases in the dynamic drag force in the region of
independent collisions and in the region of collective
interaction are 32 and 10%, respectively; these values
are, respectively, 28 and 8% for commercial magne�
sium, 8 and 3% for copper, 3 and 1% for molybdenum,
and 2 and 1% for tungsten.

Thus, in the number of materials, the hydrostatic
compression of a crystal can lead to a significant
increase in the dynamic dislocation drag force by point
defects.
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