Д.В. Бельков

АЛГОРИТМ РАЗМЕЩЕНИЯ ФАЙЛОВ ПО УЗЛАМ ВЫЧИСЛИТЕЛЬНОЙ СЕТИ РАСПРЕДЕЛЕННОЙ САПР

Сформулирована задача размещения файлов распределенной САПР по узлам вычислительной сети. В качестве оптимизируемого критерия размещения файлов предложена максимизация суммарного времени использования файлов узлов. Ограничениями в задаче служат объемы памяти и коэффициенты загрузки узлов. Предложен эвристический алгоритм решения задачи. Приведены результаты исследования алгоритма. Табл. 1, ист. 2.

Задача оптимального размещения файлов распределенной системы по узлам вычислительной сети возникает при проектировании и при эксплуатации вычислительных сетей. Особую актуальность она приобретает в связи с развитием сети INTERNET, в государственных и корпоративных сетях управления, в локальных сетях для автоматизированного проектирования [1]. Наиболее подходящим построением САПР может быть объектноориентированная машина распределенной архитектуры [2]. Частью машины САПР является собственная распределенная операционная система. В эту систему входит оптимизатор, который производит самоадаптацию размещения файлов в зависимости от интенсивности их использования. В статье предлагается возможный алгоритм работы оптимизатора.

Обозначим: F_{ij} - количество запросов к файлу і из узла ј в единицу времени; X_{ij} =1, если файл і расположен в узле ј, иначе X_{ij} =0; V_i - объем файла і; B_j - объем узла ј, i=1...m, j=1...n. Значения F_{ij} случайны и зависят от времени t, остальные величины постоянны. Обозначим: T_j - время использования файлов узла j; θ_j - допустимое время выполнения запроса к файлам узла j; ρ_j - коэффициент загрузки узла j: $\rho_j = \sum_{i=1}^m F_{i,j} \cdot \theta_j$. Если $0 < \rho_j < 1$, то в узле j нет очереди запросов к файлам. Если $\rho_j > 1$, то в узле j возникает очередь запросов к файлам. Поэтому в случае $\rho_j > 1$ время реакции узла на запрос больше, чем в случае $0 < \rho_j < 1$. Для эффективной работы системы необходимо выполнение условий: $\rho_j \to \max$; $\rho_j < 1$, $T_j \to \max$, j=1...n. Поэтому файлы должны быть размещены по узлам с целью максимизации функции (1) при ограничениях (2)-(4).

Целевая функция:

$$T = \sum_{i=1}^{m} \sum_{j=1}^{n} \rho_{j} X_{ij} T_{j} V_{i} / B_{j} = \sum_{i=1}^{m} \sum_{j=1}^{n} C_{i,j} X_{i,j} \rightarrow \max$$
 (1)

Ограничения:

$$X_{ij} = \{0;1\}, \sum_{j=1}^{n} X_{ij} = 1, i=1...m$$
 (2)

$$\sum_{i=1}^{m} V_i X_{ij} \le B_j , \text{ j=1...n}$$
 (3)

$$\rho_i$$
 <1, j=1...n (4)

В задаче (1)-(4) максимизируется суммарное время использования файлов узлов. В ней необходимо найти матрицу размещений файлов Х. Каждый файл размещается только в один узел. Задача относится к классу NP-трудных, так как содержит в качестве частного случая многомерную задачу о рюкзаке.

Эвристический алгоритм решения задачи (1)-(4) размещает файлы по принципу "в первый подходящий узел в порядке убывания размеров файлов" (FFD). Перед применением алгоритма файлы нужно упорядочить по убыванию их размеров, а узлы - по возрастанию объемов. Работа алгоритма состоит из двух этапов. На первом этапе алгоритм находит для файла объемом V те узлы, в которые файл помещается по размеру. На втором этапе, среди найденных узлов определяется узел с наибольшим значением $C_{i} = \rho_{i} T_{i} V / B_{i}$. Для решения задачи (1)-(4): 1) Задаем размер первого размещаемого файла V и количество размещаемых файлов m; 2) Формируем векторы C(n), X(n), W(n): $C_i = \rho_i T_i V / B_i$; $X_i = 0$; $W_i = 0$; 3) Полагаем i=1; T=0; 4) Пока i≤m: a) Формируем вектор E(n): E_j =1, если $W_j+V\leq B_j$, иначе E_j =0; б) Среди узлов, для которых $E_j=1$, находим узел р такой, что $C_p=\max_{E_j=1}C_j$; в) Помещаем файл в узел р: $X_{_p}:=1\,;\;W_{_p}:=W_{_p}+V\;;\;$ г) Находим T=T+ $C_{_p}\,;\;$ д) Задаем размер нового файла V; e) Формируем новые векторы C(n), X(n): $C_i = \rho_i T_i V / B_i$; X_i =0; ж) Полагаем i=i+1 и переходим к пункту a). На этапе 4a может оказаться, что файл не помещается ни в один из узлов, т.е. алгоритм не может решить задачу при заданных начальных условиях. В этом случае необходимо увеличить объем узлов, а затем повторить вычисления с шага 1. Временная сложность алгоритма - O(m(2n-1)).

Обозначим: Р – наилучшее значение целевой функции, полученное полным перебором; А - значение целевой функции, полученное предлагаемым в статье алгоритмом; Q - относительная погрешность алгоритма: $Q = (P - A) \cdot 100\% / P$. Так как $P \ge A > 0$, то $0 \le Q < 100\%$. Обозначим: A значение целевой функции, полученное предлагаемым алгоритмом; М максимально возможное значение целевой функции; $Q_{\scriptscriptstyle m}$ - максимально возможная относительная погрешность алгоритма: $Q_m = (M-A) \cdot 100\% / M$. Значение М будет достигнуто, если файл размещается в узел р, такой, что $C_p = \max_i C_j$, j=1...n. Если задача имеет большую размерность, полным перебором значение Р найти невозможно. Уточним оценку Q для такого равномерно распределенной случая. Будем считать, что Р – значение случайной величины ξ , которая принимает значения в интервале [A;M]. Наиболее вероятное значение (мода) этой случайной величины совпадает с ее математическим ожиданием. Найдем математическое ожидание $\,m_{\xi}\,$, дисперсию d_{ξ} , среднеквадратичное отклонение σ_{ξ} , средневероятное отклонение Δ_{s} случайной величины ξ по формулам: $m_{\xi}=(A+M)/2$; $d_{\xi}=(M-A)^{2}/12$; σ_{ξ} = $\sqrt{d_{\xi}}$; $\Delta_{s}=(M-A)/4$. Обозначим: $\mathrm{R=}\,m_{\xi}+\Delta_{s}$; $Q_{r}=(R-A)\cdot 100\%/R$. Таким образом, наиболее вероятно, что $A\leq P\leq R\leq M$, следовательно $0\leq Q\leq Q_{r}\leq Q_{m}<100\%$.

Для исследования работы алгоритма проведен эксперимент на ПЭВМ AMD 500MHz. Программа составлена на Delphi 3.01, операционная система Windows 98. Были решены 5 задач размещения файлов узлам сети. Элементы матрицы F_{ij} в задачах формировались функцией random(100); θ_j =0,01; T_j =100. Вектор V сформирован по формулам: $V_1=m$; $V_i=V_1-(i-1)$, где i=1...m. $B_1=\sum_{i=1}^m V_i \ / n$; $B_j=B_1+(j-1)$, j=1...n.

Обозначим: T_p - время решения задачи алгоритмом. Результаты экспериментов показаны в таблице 1. С увеличением размерности задачи время работы алгоритма растет полиномиально. Относительная погрешность алгоритма не превышает 1%.

Таблица 1 – Результаты экспериментов

Nº	m	n	М	Α	Q_r , %	Q_m , %	T_p , c.
1	10^{4}	10	903,77	897,32		0,7	0,28
2	$5 \cdot 10^4$	10	903,44	898,87		0,51	1,16
3	10^{5}	10	903,4	899,52		0,43	2,25
4	$5 \cdot 10^{5}$	10	903,8	900,36		0,38	11,21
5	10^{6}	10	903,88	900,52		0,37	22,47

Выводы. В статье сформулирована задача размещения файлов распределенной САПР по узлам вычислительной сети. В качестве оптимизируемого критерия размещения файлов предложена максимизация суммарного времени использования файлов узлов. Ограничениями в задаче служат объемы памяти и коэффициенты загрузки узлов. В статье предложен эвристический алгоритм решения задачи. Временная сложность алгоритма - O(m(2n-1)), относительная погрешность Q - $0 \le Q \le Q_r \le Q_m < 100\%$. Результаты экспериментов подтверждают эффективность алгоритма при решении задач большой размерности.

Список литературы

- 1. Ладыженский Ю.В., Бельков Д.В. Рациональное размещение файлов распределенной базы данных в вычислительной сети с произвольной топологией. В кн. Информатика, кибернетика и вычислительная техника (ИКВТ-99). Сборник трудов ДонГТУ, Выпуск 10. Донецк: ДонГТУ, 1999, С. 44-49.
- 2. Рахлин В.А. Моделирование машин баз данных распределенной архитектуры. //Программирование, 1996, N 2. C. 7-16.