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THEORETICAL RESEARCHES OF PRESSURE LOSSES WHILE 
PNEUMATIC CONVEYING THROUGH HORIZONTAL PIPES 

For listed particles flows by methods of a hydromechanics the equations intended for 
calculation of specific losses of pressure at pneumotransport are formed.  

The pipeline horizontal segment specific pressure losses due to friction are the important 
parameter, determining industrial pneumatic conveying systems power characteristics. The known 
techniques of the pneumatic conveying system hydraulic design are based on empirical 
dependences, the scope of which is limited as a rule by the experiment conditions and the design 
error comes up to 40 % and more. 

One of the most common specific pressure losses formulas is the Geisterstadt formula, 
taking the form: 
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where P  and P  – pressure losses at the pipe segment with the length L; 
  – mixture mass concentration; 
К – Geisterstadt empirical coefficient. 
According to the author, the dependence (1) can be considered as general, and the 

coefficient K numerical values shall be estimated for every single case experimentally. 
Provided the carefully carried out experiments the formula (1) can present the results that 

are accurate enough for engineering practice. Yet all the attempts for the coefficient K theoretical 
proving are unsuccessful so far. 

The work purpose is in theoretical proving, accuracy improving of the Geisterstadt formula 
(1) and generally – in creating opportunities for a new suspension flows design technique. 

Specific pressure losses are detected as a rule at the pipe length of 1 m. In this case the 
pressure difference at the segment ends is not big and the assumption of the gas medium 
incompressibility and isothermality can be accepted. The flow is considered one dimensional i. e 
the velocity, pressure, temperature, density and the concentration are constant in the pipe cross 
section and vary while the sections change. 

On the basis of the assumptions in the work [1] the equations of the suspension motion 
through the pipe segment with the length of L have been set up. One of the equations is the 
Bernoulli's equation. The Bernoulli's equation hasn’t been solved in the work [1] just like there is 
no solution of the equation in the world practice. Later on in the work [2] the solution of the 
equation was found, resulting in the possibility of a new theoretically proven pneumatic conveying 
hydraulic design technique developing. 

The Bernoulli's equation for suspension can be presented in the form [3]: 
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where m  – gas mixture density; 

mu  – gas mixture motion mean velocity; 

Р – pressure;  
P  – friction pressure losses at the pipe segment with the length L. 



Considering the respective dependences derived in the works [1] and [2] and presented in 
[3], the equation (2) is transformed to the form: 
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where S  and   – solids and gas density; 

u  – gas mean velocity; 

S  – Coriolis coefficient for solids. 

(3) comprises the volume flow rate vC  equal to the ratio of solids volume flow rate SQ  to 

the suspension volume flow rate SQ Q Q   and the mean volume concentration С. Yet in the 

pneumatic conveying practice the notions volume and actual flow rate concentrations are not used 
as vC  and С are hardly measured values. The notion of mass flow rate  , equal to the ratio of solids 

mass flow rate SG  to the gas mass flow rate G  is used instead of them, so that  
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at that, the value SG  is set as a rule and G  is determined by the formula 
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Let us express vC  and С through  . Considering 
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and S S SQ G  , Q G  , we have 
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 , the one in the equation (6) right part can be neglected. As a result of this the 

equation, taking into account the change of notation from pC  to ,  takes the form 
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While writing down the formula (7), changing of notation from vC  to   is due to the fact 

that the symbols denote different by meanings volume flow rates: vC  – the ratio of solids volume 

flow rate to the suspension volume flow rate whereas   – the ratio of solids volume flow rate to 

the gas volume flow rate. 
Inserting the expression (7) into (3) instead of vC  we obtain 
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Regarding the functional connection of C with the mass flow rate  , the following equation 
obtained in the solids [4] hydraulic pipeline conveying research area is used for determining it. 
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In (9) – (11) the following notation are agreed: mС  – solids limit concentration; cru  – 

critical velocity of pneumatic conveying through the horizontal pipeline, corresponding with the 
solids saltation as still sediment on the pipe lower wall; ReS  – Reynolds number expressed through 

the solids mean diameter Sd  and the free fall velocity Sw , i. e. 
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where   – gas kinematic viscosity. 
Inserting the expression (7) into (9) instead of vС  выражение (7), we obtain the constraint 

equation of C  and  : 
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The solution of the equation (12) allows determining the volume concentration C for the 

given values 
S





, ReS , mC  and cru

u
. At that the equation (12) is solved by numerical or 

graphical method. 
Let us note that in the particular case, when 0  , the equation (8) is transformed into an 

ordinary Bernoulli's equation for a horizontal flow of an incompressible fluid with the density  : 
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As is known in hydraulics, the specific pressure loss P
L

 , conditioned by pipe walls and 

incompressible fluid friction, is proportional to the flow specific (per unit volume) kinetic energy 
2

2
u , expressed by the first addend of the Bernoulli's equation (8) left member and is determined 

by the Darcy–Weisbach formula 
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where λ – hydraulic friction coefficient; 
d – the circular pipe drift diameter. 



Proceeding to the suspension flow and considering the expression of the first addend of the 
Bernoulli's equation (8) left member, we can write down by analogy with (14), 
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where m  – suspension hydraulic friction coefficient. The notion is determined by the same 

formulas as incompressible fluids motion, but considering the Reynolds number Rem , expressed 

through the gas mean velocity u , the pipe diameter d  and the suspension kinematic viscosity  , i. 
e. 
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The kinematic viscosity m  is determined as m
m

m
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
, where m  and m  – the gas 

suspension mean effective dynamic viscosity and density throughout the pipe section. For C weak 
volume concentrations the value m  is determined by formula [5]: 
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The gas suspension mean velocity is: 
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Considering the formulas (17) and (18) the expression for m  is as follows: 
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If we multiply and divide the right member of the equation (15) by the hydraulic friction 
coefficient   the expression in the square brackets denote with φ and consider formula (14), the 
equation can be written as: 
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where 
P

L


 – specific pressure losses while the pure gas motion. 

It can be taken 1m  . for suspension flows. After that introducing the notation: 
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we will obtain: 
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and in this case formula (20) is converted into the Gastershtadt formula (1). 
The linear dependence of type 1 was the development basis for the experimental data of 

specific pressure losses for friction measuring while pneumatic conveying. Thereafter it was 
established that the coefficient K is not constant for the flows of enhanced concentration. The 
coefficient value depends upon a variety of parameters, particularly the conveying gas mean 
velocity, solids size and density, solids mass and volume flow rates, the pipe diameter. The key 
parameters dependence of K coefficient solves the equation (21) following from (20). Therein lies 
the vital difference of the generalizing formula from the Gastershtadt formula (1). 

Hence on the basis of the Bernoulli's equation for the steady gas suspension flow in the 
horizontal circular cylindrical pipe the scientifically proven formula of specific pressure losses for 
friction (20) has been obtained. Checking evaluation by the formula shows a good coincidence with 
the experimental data. The evaluation error is no more than 10 %. 

References 

1. Чальцев М. Н. О гидравлическом расчете трубопроводов для пневмотранспортных систем / М. Н. Чальцев // 
Вестник НТУУ (КПИ), серия Машиностроение. – 2000. – Т. 1, № 38. – С. 50–54.  

Chaltsev M. N. O gidravlicheskom raschete truboprovodov dlya pnevmotransportnykh system (About Pipelines 
Hydraulic Design for Pneumatic Conveying Systems) / M. N. Chaltsev // Vestnik NTUU (KPI) seriya 
Mashinostroyeniye. – 2000. – T. 1, № 38. – S. 50–54. 

2. Криль С. И. Уравнение Бернулли для потока газовзвеси / С. И. Криль, М. Н. Чальцев // Прикладная 
гидромеханика. – 2004. – Т. 6 (78), № 1.  

Kril S. I. Uravneniye Bernulli dlya potoka gazovzvesi (The Bernoulli's Equation for Gas Suspension Flow) / 
S. I. krill, M. N. Chaltsev // Prikladnaya gidromekhanika. – 2004. – T. 6 (78), № 1. 

3. Константинов Ю. М. Гидравлика / Ю. М. Константинов. – К.: Высшая школа, 1981. – 358 с.  

Konstantinov Yu. M. Gidravlika (Hydraulics) / Yu. M. Konstantinov. – K.: Vysshaya shkola, 1981. – 358 s 

4. Криль С. И. Напорные взвесенесущие потоки / С. И. Криль. – К.: Наук. думка, 1990. – 160 с.  

Kril S. I. Napornyye vzvesenesushchiye potoki (Pressure Suspension Flows) / S. I. Kril. – K.: Nauk. dumka, 1990. – 
160 s 

5. Кріль С. І. До питання про реологічне моделювання суспензій / С. І. Кріль // Прикладна гідромеханіка. – 
2003. – Т. 5 (77), № 2. – С. 20–26.  

Kril S. I. Do pytannya pro reologichne modelyuvannya suspenziy (On the Question of Suspensions Rheological 
Modelling) / S. I. Kril // Prykladna gidromekhanika. – 2003. – Т. 5 (77), № 2. – S. 20–26 


