
3

МІНІСТЕРСТВО ОСВІТИ І НАУКИ, МОЛОДІ ТА СПОРТУ УКРАЇНИ
ДЕРЖАВНИЙ ВИЩИЙ НАВЧАЛЬНИЙ ЗАКЛАД

«ДОНЕЦЬКИЙ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ»

Методичні вказівки і завдання
 до виконання лабораторних робіт

з курсу «Банківські інформаційні системи»

2011

3

МІНІСТЕРСТВО ОСВІТИ І НАУКИ, МОЛОДІ ТА СПОРТУ УКРАЇНИ
ДВНЗ «ДОНЕЦЬКИЙ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ»

ФАКУЛЬТЕТ КОМП’ЮТЕРНИХ НАУК І ТЕХНОЛОГІЙ
КАФЕДРА ПРИКЛАДНОЇ МАТЕМАТИКИ ТА ІНФОРМАТИКИ

Методичні вказівки і завдання
до виконання лабораторних робіт

з курсу «Банківські інформаційні системи»
 (для студентів спеціальності 6.03050201 „Економічна кібернетика”)

Укладач:
А. М. Гізатулін, к.е.н., доц.

Розглянуто на засіданні кафедри
прикладної математики і інформатики
Протокол № 7 від 20.12.2010

Затверджено на засіданні
Навчально-видавничої ради ДонНТУ
Протокол № __ від __.__.2011

2011

3

УДК 004.052:336.71

Методичні вказівки і завдання до виконання лабораторних робіт з курсу
«Банківські інформаційні системи» / для студентів спеціальності 6.03050201
Економічна кібернетика / Укладач доц. Гізатулін А.М. – Донецьк: ДонНТУ,
2011. – 72 с.

Методичні вказівки і завдання до виконання лабораторних робіт з курсу
«Банківські інформаційні системи» підготовлені на основі типової програми курсу
і направлені на вивчення методології, методики та інструментарію побудови
банківських інформаційних систем, їх аналіз та використання. Метою
лабораторного практикуму є формування системи практичних знань у галузі
дослідження та проектування інформаційних систем у банківській сфері.

Запропоновані лабораторні роботи виконуються за допомогою сучасної
систем управління базами даних Microsoft Access 2007 і містять докладні приклади
 розв’язання поставлених задач.

Укладач: А.М. Гізатулін, к.е.н., доц.

3

TABLE OF CONTENTS

Lab 1. Creating Tables ………………………………………………………………... 5

Lab 2. Creating Queries ………………………………………………………………. 22

Lab 3. Creating Multiple Table Queries ……………………………………………… 29

Lab 4. Creating Table Form …………………………………………………………... 33

Lab 5. Creating Table Report ………………………………………………………… 39

Lab 6. Creating Macros ………………………………………………………………. 47

Lab 7. Creating Conditional Expressions and Assigning a Macro …………………… 53

Lab 8. Creating Module ………………………………………………………………. 61

Task variants ………………………………………………………………………….. 67

Appendix A Macro action reference ………………………………………………….. 68

Appendix B Data model for combined investment and retail banking operational data 71

Literature .. 72

3

LAB 1
CREATING TABLES

Lab objective: to study process of creating tables

The first databases implemented during the 1960s and 1970s were based upon
either flat data files or the hierarchical or networked data models. These methods of
storing data were relatively inflexible due to their rigid structure and heavy reliance on
applications programs to perform even the most routine processing.

In the late 1970s, the relational database model which originated in the academic
research community became available in commercial implementations such as IBM DB2
and Oracle. The relational data model specifies data stored in relations that have some
relationships among them (hence the name relational).

In relational databases such as Sybase, mySQL, Oracle, IBM DB2, MS SQL
Server and MS Access, data is stored in tables made up of one or more columns (Access
calls a column a field). The data stored in each column must be of a single data type such
as Character (sometimes called a "string"), Number or Date. A collection of values from
each column of a table is called a record or a row in the table.

Different tables can have the same column in common. This feature is used to
explicitly specify a relationship between two tables. Values appearing in column A in
one table are shared with another table.

Below are two examples of tables in a relational database for a local bank:

Customer Table
CustomerID Name Address City State Zip
Number Character Character Character Character Character
1001 Mr. Smith 123 Lexington Smithville KY 91232
1002 Mrs. Jones 12 Davis Ave. Smithville KY 91232
1003 Mr. Axe 443 Grinder Ln. Broadville GA 81992
1004 Mr. & Mrs. Builder 661 Parker Rd. Streetville GA 81990

The Customer table has 6 columns (CustomerID, Name, Address, City, State and
Zip) and 4 rows (or records) of data. The Accounts table has 5 columns (CustomerID,
AccountNumber, AccountType, DateOpened and Balance) with 7 rows of data.

Each of the columns conforms to one of three basic data types: Character, Number
or Date. The data type for a column indicates the type of data values that may be stored
in that column.

Number - may only store numbers, possibly with a decimal point.
Character - may store numbers, letters and punctuation. Access calls this data type

Text.
Date - may only store date and time data.
In some database implementations other data types exist such as Images (for

pictures or other data). However, the above three data types are most commonly used.

Accounts Table
CustomerID AccountNumber AccountType DateOpened Balance
Number Number Character Date Number

3

1001 9987 Checking 10/12/1989 4000.00
1001 9980 Savings 10/12/1989 2000.00
1002 8811 Savings 01/05/1992 1000.00
1003 4422 Checking 12/01/1994 6000.00
1003 4433 Savings 12/01/1994 9000.00
1004 3322 Savings 08/22/1994 500.00
1004 1122 Checking 11/13/1988 800.00

Notice that the two tables share the column CustomerID and that the values of the
CustomerID column in the Customer table are the same the values in the CustomerID
column in the Accounts table. This relationship allows us to specify that the Customer
Mr. Axe has both a Checking and a Savings account that were both opened on the same
day: December 1, 1994.

Another name given to such a relationship is Master/Detail. In a master/detail
relationship, a single master record (such as Customer 1003, Mr. Axe) can have many
details records (the two accounts) associated with it.

In a Master/Detail relationship, it is possible for a Master record to exist without
any Details. However, it is impossible to have a Detail record without a matching Master
record. For example, a Customer may not necessarily have any account information at all.
However, any account information must be associated with a single Customer.

Each table also must have a special column called the Key that is used to uniquely
identify rows or records in the table. Values in a key column (or columns) may never be
duplicated. In the above tables, the CustomerID is the key for the Customer table while
the AccountNumber is the key for the Accounts table.

A Business Example
In this section, we will outline a business example that will be used as a basis for

the examples throughout the tutorial. In organizations, the job of analyzing the business
and determining the appropriate database structure (tables and columns) is typically
carried out by Systems Analysts. A Systems Analyst will gather information about how
the business operates and will form a model of the data storage requirements. From this
model, a database programmer will create the database tables and then work with the
application developers to develop the rest of the database application.

For this tutorial, we will consider a simple banking business. The bank has many
customers who open and maintain one or more accounts. For each Customer, we keep a
record of their name and address. We also assign them a unique CustomerID. We assign
this unique identifier both for convenience and for accuracy. It is much easier to identify
a single customer using their CustomerID rather than by looking up their full name and
address. In addition, it is possible for the bank to have two customers with the same name
(e.g., Bill Smith). In such cases, the unique CustomerID can always be used to tell them
apart.

In a similar fashion, all accounts are assigned a unique account number. An
account can be either a checking account or a savings account. Savings accounts earn
interest but the only transactions allowed are deposits and withdrawals. Checking
accounts do not earn interest. We maintain the date that the account was opened. This
helps us track our customers and can be useful for marketing purposes. Finally, we
maintain the current balance of an account.

In the previous section, we gave the structure and some sample data for the
Customer table and the Accounts table. These will be used to support the data storage
part of our Banking application.

3

In any database application, each of the tables requires a means to get data into
them and retrieve the data at a later time. The primary way to get data into tables is to use
data entry forms. The primary ways to get data back out of tables or to display data in
tables are to use queries or reports.

For this tutorial, we will create a data entry form for each table, a query for each
table and a report for each table.

In the following sections, we will first introduce how to start Access and how to
create a new database.

Starting Microsoft Access
As with most Windows programs, Access can be executed by navigating the

Start menu in the lower left-hand corner of the Windows Desktop.
To start Access, click on the Start button, then the Programs menu, then move

to the MS Office menu and finally click on the Microsoft Access menu item.
The MS Office Professional menu is shown below.

Microsoft Office Menu for Office 2007
Note that this arrangement of menus may vary depending on how MS Office was

installed on the PC you are using.
Once Access is running, an initial screen will be displayed:

3

From this initial screen, the user can create a new database (either blank or with
some tables created with the database wizard), or open up an existing database.

In general, the first time one begins a project, a new, blank database should be
created. After that point, use the Open existing database option to re-open the database
created previously.

Warning - If you have previously created a database, and then create it again using
the same name, you will overwrite any work you have done.

For the purposes of this tutorial, if you are going through these steps for the first
time, choose the option to create a new, blank database as shown in the above figure.

In Access 2007, click on the round Office button in the upper left corner and
choose New from the drop down menu. Fill in File Name as bankdb.accdb and click
on the Create button to create the database as in the figure below.

It is advisable to keep the name of the database (bankdb in the above example)
relatively short and do not use spaces or other punctuation in the name of the database.
Also, the name of the database should reflect the database's contents.

3

New Database screen for Access 2007
In the above file name, bankdb is the name
chosen for this particular database and
.accdb is the file name extension given for
Microsoft DataBase 2007 files.

Once the new database is created, the following main Access screen will appear:
MS Access 2007

The screen layout for MS Access 2007 is significantly different from past versions.
Most of the tabs along the top of the screen have been rearranged. In addition, the default
main screen after creating a new database automatically switches to the Design view to
create a new table.

The following tabs will appear at the top of the screen:
 Home tab - Controls for changing fonts, performing queries, copy/paste/cut data,

etc.
 Create tab - Controls for creating tables, forms, reports, etc.
 External Data tab - Controls for loading data from other data sources into MS

3

Access.
 Database Tools tab - Controls for managing databases (security, switchboard,

etc.)
 Design tab - This will appear when designing a new table, form, report, etc.

Review of Starting Microsoft Access
To start Microsoft Access:

1. Use the Start button on the task bar to open: Programs -> MS Office ->
Microsoft Access

2. To create a new database, choose Blank Database and specify a new file name for
the database. Be sure to use a descriptive name for the new database. Click on the
OK button to create the new database.

3. To open an existing database, choose Open an Existing Database, highlight More
Files... and click on the OK button. Then navigate to the drive, highlight the
existing database file on the floppy disk and click the OK button again to open the
database.
To exit Access, pull down the File menu (or Office menu) and select the Exit

menu item.

Creating and Viewing Tables
Tables are the main units of data storage in Access. Recall that a table is made up

of one or more columns (or fields) and that a given column may appear in more than one
table in order to indicate a relationship between the tables.

From the business example discussed earlier, we concluded that two tables would
be sufficient to store the data about Customers and their bank Accounts. We now give
the step-by-step instructions for creating these two tables in Access.

There are a number of ways to create a table in Access. Access provides wizards
that guide the user through creating a table by suggesting names for tables and columns.
The other main way to create a table is by using the Design View to manually define the
columns (fields) and their data types.

While using the wizards is a fast way to create tables, the user has less control over
the column names (fields) and data types. In this tutorial, we will describe the steps to
create a table using the Design View. Students are encouraged to experiment on their own
with using the Create Table wizard.

Creating a Table Using the Design View
To create a table in Access using the Design View, perform the following steps:
1. In Access 2007, the Create New Table tab should already be highlighted and a

new table named table1 created. If this is not the case, click on the Create tab and click
on the Table icon. Then pull down the View menu and choose Design View.

3

2. The Table Design View will appear. Fill in the Field Name, Data Type and
Description for each column/field in the table. The CustomerID field is filled in below:

Table Design View for Access 2007

Note that the default name given for the table is Table1. In a later step, we will
assign an appropriate name for this table.

3. Fill in the information for the fields as follows:
Field Name Data Type Description
CustomerID Number The Unique Identifier for a Customer
CustomerName Text The Name of the Customer
Address Text The Address of the Customer

3

City Text The City of the Customer
State Text The home State of the Customer
Zip Text The Zip Code of the Customer

4. A figure showing the design view with the new table definition filled in is given
below:

Now that all of the fields have been defined for the table, a Primary Key should be
defined. Recall that the Primary Key will be used to uniquely identify a record in the
table (in this case a Customer). Highlight the CustomerID field and click on the
Primary Key button on the button bar

Notice that a small key appears next to the field name on the left side.
Note: To remove a primary key, simply repeat this procedure to toggle the primary

key off.

5. As a final step, the table must be saved. Pull down the Office menu and
choose the Save As menu item. A dialog box will appear where the name of the new
table should be specified. Note that Access gives a default name such as Table1 or
Table2. Simply type over this default name with the name of the table. For this example,

3

name the table: Customer Then click on the OK button.

At this point, the new Customer table has been created and saved.
Note about naming fields in MS Access
When defining the fields (columns) for a table, it is important to use field names

that give a clear understanding of the data contents of the column. For example, does the
field CNO indicate a Customer Number or a Container Number?

Field names in Access can be up to 64 characters long and may contain spaces.
However, the use of spaces in field names and table names is strongly discouraged. If
you wish to make field names easier to read, consider using an underscore character to
separate words. However be certain no spaces appear before or after the underscore.

The following table summarizes some different ways to give field names:
Description Bad Good

Unique identifier for a
customer CID CustomerID or

Customer_ID
Description for a product PDESC ProductDescription
Employee's home
telephone number Employee_home_telephone_number HomePhone

Bank account number BA# AccountNumber

Creating a Table
Create the Accounts table by following the same steps used to create the Customer

table.
1. Click on the Create tab and then click on the Table button.

3

2. Pull down the View menu and choose Design. The Table Design View will
appear. Fill in the Field Name, Data Type and Description for each column/field in the
Accounts table.

Field Name Data Type Description
CustomerID Number The Unique Identifier for a Customer
AccountNumber Number The Unique Identifier for a Bank Account
AccountType Text The type of account (Checking, savings, etc.)
DateOpened Date The date the account was opened
Balance Number The current balance (money) in this account (in $US)

3. A figure showing the design view with the new table definition filled in is given
below:

4. Define a Primary Key for the Accounts table. Click on the AccountNumber
field with the Right mouse button and choose Primary Key from the pop-up menu.

5. Save the new Accounts table by pulling down the File menu and choosing the
Save menu item. Fill in the name of the table: Accounts Then click on the OK button.

Viewing and Adding Data to a Table
Data can be added, deleted or modified in tables using a simple spreadsheet-like

display. To bring up this view of a single table's data, highlight the name of the table and
then double-click on the name of the table.

In this view of the Customer table, shown in the figure below, the fields (columns)
appear across the top of the window and the rows or records appear below. This view is
similar to how a spreadsheet would be designed.

3

Note at the bottom of the window the number of records is displayed. In this case,
since the table was just created, only one blank record appears.

To add data to the table, simply type in values for each of the fields (columns).
Press the Tab key to move between fields within a record. Use the up and down arrow
keys to move between records. Enter the data as given below:

CustomerID Name Address City State Zip
1001 Mr. Smith 123 Lexington Smithville KY 91232
1002 Mrs. Jones 12 Davis Ave. Smithville KY 91232
1003 Mr. Axe 443 Grinder Ln. Broadville GA 81992
1004 Mr. & Mrs. Builder 661 Parker Rd. Streetville GA 81990

To save the new data, pull down the Office menu and choose Save.
To navigate to other records in the table, use the navigation bar at the bottom of

the screen:

To modify existing data, simply navigate to the record of interest and tab to the
appropriate field. Use the arrow keys and the delete or backspace keys to change the
existing data.

To delete a record, first navigate to the record of interest. Then pull down the
Edit menu and choose the Delete menu item.

To close the table and return to the Access main screen, pull down the File menu
and choose the Close menu item.

Adding Data to a Table
Be sure to enter the data exactly as shown including the capitalization of the data

in the AccountType field. e.g., type Savings instead of savings or SAVINGS. Note
that when entering the dates, type in the full four digits for the year. By default, Access
displays all 4 digits of the year (older version of Access only displayed two digits).

Be sure to save the data when you are done. The figure below shows the Accounts
table and data as it should appear when you are done with this exercise.

3

At this point in the tutorial, we have created two tables, Customers and Accounts,
and added data to each one. In the subsequent sections, we will cover how to query and
report on the data in the tables and how to create a user-friendly data entry form using the
Access wizards.

Creating Relationships Between tables
Recall that one of the main characteristics of relational databases is the fact that all

tables are related to one another. In the Bank database thus far, the Customers table is
related to the Accounts table by virtue of the CustomerID field appearing in both tables.
Access has a means to make this relationship explicit using the Relationships screen.
Access uses this information when designing reports, forms and queries that require more
than one table to be displayed.

To get started, make sure the Accounts table and the Customer table are both
closed. Access will halt creation of any relationships if the table are currently opened. To
close a table, either right-click on the table name in the tab above the table and choose
the close menu item, or click the small X to right above the table.

Next, display the Relationships screen by clicking on the Database Tools tab
and then click on the Relationships button as shown below.

3

The blank Relationships screen will appear as follows:

The Show Table dialog box will appear by default. Highlight both the Customers
table and the Accounts table as shown below and then click on the Add button.

Then click on the Close button to close this dialog box. The Relationships screen

3

will now reappear with the two tables displayed as below:

To connect the Customers table with the Accounts table to form a relationship,
click on the CustomerID field in the Customers table and drag it over on top of the
CustomerID field on the Accounts table. Upon releasing the mouse button, the Edit
Relationships dialog box will appear as below:

Access will do its best to determine the Relationship Type (almost always it will
select One-to-Many). For this example, Access knows that CustomerID is a key of the
Customer table so it chooses this field as the "One" side. This makes the Accounts table
the "Many" side as One customer may have Many accounts.

One additional step to be taken is the check off the box labeled "Enforce
Referential Integrity". This option puts constraints into effect such that an Accounts
record can not be created without a valid Customer record, and Access will also prevent a
user from deleting a Customer record if a related Accounts record exists. At this point,

3

click on the Create button to create the relationship. The Relationships screen should
reappear with the new relationship in place as follows:

Note the symbols "1" (indicating the "One" side) and the infinity symbol
(indicating the "Many" side) on the relationship. Close the relationships screen and
select Yes to save the changes to the Relationships layout.

If the relationship does not appear in the above fashion, highlight it and press the
delete key to delete it. Then go back to the table design view and make certain that the
CustomerID field is designated as the key of the Customers table. Then go back to the
Relationships screen and try to recreate the relationship.

Review of Creating and Viewing Tables
Creating a new table requires the following steps:

1. Click on the Tables tab on the Access main screen
2. Click on the New button.
3. Choose the Design View and click the OK button.
4. Fill in the name, data type and description of each of the fields in the table.
5. Designate a primary key by clicking on one of the fields with the right mouse

button and then choose Primary Key from the pop-up menu.
6. Save the table by pulling down the File menu and choosing Save.
7. Close the new table by pulling down the File menu and choosing Close.

To change the design of an existing table (e.g., to add, change or delete a field):
1. Click on the Tables tab on the Access main screen
2. Highlight the name of the table to be modified and click on the Design button.
3. Make the necessary changes.
4. Save the table by pulling down the File menu and choosing Save.
5. Close the table by pulling down the File menu and choosing Close.

To add, delete or change data in an existing table:

3

1. Click on the Tables tab on the Access main screen
2. Highlight the name of the table to be modified and click on the Open button.
3. Make the necessary changes to the data.
4. Save the table data by pulling down the File menu and choosing Save.
5. Close the table by pulling down the File menu and choosing Close.

To create or edit relationships between tables:
1. Pull down the Tools menu and select the Relationships menu item.
2. To display tables, right click and choose Add Tables
3. To create new relationships, drag a key field from one table and drop it on the

associated field in another table
4. To edit an existing relationship, double click on the relationship line.
5. To delete an existing relationship, click on the relationship line and press the

delete key.

3

LAB 2
CREATING QUERIES

Lab objective: to study process of creating queries

Creating and Running Queries
Queries are a fundamental means of accessing and displaying data from tables.

Queries can access a single table or multiple tables. Examples of queries for our bank
database might include:
 Which Customers live in Georgia?
 Which Accounts have less than a $500 balance ?

In this section, we show how to use the Access Wizards to create queries for a single
table and for multiple tables.

Single Table Queries
In this section, we demonstrate how to query a single table. Single table queries are

useful to gain a view of the data in a table that:
 only displays certain fields (columns) in the output
 sorts the records in a particular order
 performs some statistics on the records such as calculating the sum of data values

in a column or counting the number of records, or
 filters the records by showing only those records that match some criteria. For

example, show only those bank customers living in GA.
Creating a query can be accomplished by using either the query design view or the

Query wizard. In the following example, we will use the query wizard to create a query.
To create a new query, click on the Create tab. Then click on the the Query

wizard button.

When the Query wizard appears, highlight the Simple Query Wizard selection and
OK button.

3

The first step in the Simple Query wizard is to specify the table for the query and
which fields (columns) should be displayed in the query output. Three main sections of
this step are:

1. Tables/Queries - A pick list of tables or queries you have created.
2. Available Fields - Those fields from the table that can be displayed.
3. Selected Fields - Those fields from the table that will be displayed.

For this example, pull down the Tables/Queries list and choose the Customer table.
Notice that the available fields change to list only those fields in the Customer table. This
step is shown below:

From the list of Available fields on the left, move the Name, Address, City and
State fields over to the Selected Fields area on the right. Highlight one of the

fields and then click on the right arrow button in the center between the two areas.
Repeat this for each of the four fields to be displayed. When done with this step, the
wizard should appear as below:

3

Click on the Next button to move to the next and final step in the Simple Query wizard.
In the final step, give your new query a name. For this example, name the query:
Customer Address
At this point, the wizard will create the new query with the option to either:
 Open the query to view information - that is, the wizard will execute

the query and show the data.
 Modify the query design - the wizard will switch to the Design View to

allow further modification of the query.

Choose Open the query to view information and click on the
Finish button. When this query executes, only the customer's name, address, city and
state fields appear, however, all of the rows appear as shown in the figure below:

3

Close this query by pulling down the Office menu and choosing the Close
menu item. The Access main screen showing the Queries tab should appear. Note the
new query CustomerAddress appears under the Queries tab.

In the following example, we will modify the CustomerAddress query to only
display customers in a certain state. To accomplish this, we will make use of the Query
Design View.

Open up the CustomerAddress query in the design view by highlighting the name
of the query and clicking on the Design button. The design view will appear as in the
figure below:

The Query Design view has two major sections. In the top section, the table(s)
used for the query are displayed along with the available fields. In the bottom section,
those fields that have been selected for use in the query are displayed.
Each field has several options associated with it:
 Field - The name of the field from the table
 Table - The table the field comes from
 Sort - The order in which to sort on this field (Ascending, Descending or Not

3

Sorted)
 Show - Whether or not to display this field in the query output
 Criteria - Indicates how to filter the records in the query output.

For this example, we will filter the records to only display those customers living
in the State of Georgia (GA). We will also sort the records on the City field.

To sort the records on the City field, click in the Sort area beneath the City field.
Choose Ascending from the list as shown in the figure below:

To filter the output to only display Customers in Georgia, click in the Criteria area
beneath the State field and type the following statement:
= 'GA'

The = 'GA' statement tells Access to only show those records where the value
of the State field is equal to 'GA'. Note the use of single quotes to surround the
characters.

Run the query by clicking on the Run button (with the large red exclaimation
point). The output is shown in the figure below:

3

Finally, save and close this query to return to the Access main screen.
Single Table Queries
Use the Simple Query wizard to create a query on the Accounts table showing just

the AccountNumber, AccountType and Balance fields.
1. From the Access main screen, click on the Queries tab. Then click on the New

button.
2. Choose the Simple Query wizard option and click on the OK button.
3. Under Table/Queries: choose the Accounts table. Then move the

AccountNumber, AccountType and Balance fields over to the Selected fields area.
Then click the Next button.

4. In the next panel, you will be asked to choose between a detail or summary query.
Choose detailed query and click on the Next button.

5. Name the new Query : AccountsQuery and click on the Finish button.
The output is shown below:

Close this query by pulling down the Office menu and choosing Close.
In the next part of the exercise, we will modify the query to sort the output on the

account number and only display the Savings accounts.
1. From the Queries tab on the Access main screen, highlight the AccountsQuery and

click on the Design button.
2. Change the Sort order for the AccountNumber field to Ascending.

3

Add the following statement to the Criteria: are under the AccountType field:
= 'Savings'

3. Run the query by pulling down the Query menu and choosing the Run menu
item. The output is shown below:

4. Finally, save and close the query to return to the Access main screen.

3

LAB 3
CREATING MULTIPLE TABLE QUERIES

Lab objective: to study process of creating multiple table queries

Up to this point, queries involving only one table have been demonstrated. It is
almost a given that queries will need to involve more than one table. For this example,
assume that a manager would like to see a list of all of the customers and the type of
account(s) that each one maintains at the bank. Such a query requires data from both the
Customers table as well as the Accounts table. In such queries, Access will rely on the
Relationships established between tables to guide how the data will be assembled to
satisfy the query.

To start the process of creating a multiple table query, highlight the Query tab
(Access '97) and click on the New button to create a new query. Select the "Simple Query
Wizard" option as was done previously. When the simple query wizard appears, select
the CustomerID and Name fields from the Customers table, then switch the
Tables/Queries selection to the Accounts table and select the CustomerID, AccountType
and Balance fields from the Accounts table. The result from this step is down below:

Click the Next button to continue. In the next step of the wizard, an option will appear
to provide some level of Summary. For this example, leave the default at "Detail ..." as
shown below and then click on the Next button.

3

In the final step of the wizard, name the query "Customer Accounts Query" and click on
the Finish button. The multiple table query results should appear as follows:

As with single table queries demonstrated previously, one can change the query
definition in design view by adding filters (e.g., show account information for all
customers in 'GA').

Multiple Table Queries
For this exercise, create a new query called "Accounts Summary Query" that joins

the Cusomers table (include the CustomerID and Name fields) with the Accounts table
(include the Balance field only). In the second step of the wizard, click on the Summary

3

choice (instead of Details) and then click on the Summary Options... button.
Check off all of the Summary option boxes such as Sum, AVG, Min and Max as shown
in the figure below:

The resulting query should appear as follows:

Review of Creating and Running Queries
In this section, the basic steps for creating and running queries were introduced.

The query wizard can be used to create simple queries that access a single table. It is also
possible to then modify the query to sort or filter the records.

Creating a query using the query wizard:
1. From the Access main screen, click on the Queries tab. Then click on the New

button.
2. From the Queries tab on the main Access screen, click on the New button and

3

choose the Simple Query wizard option.
3. Under Table/Queries: choose the appropriate table for the query and then

indicate which fields in the table will appear in the query output.
If querying more than one table, change the Table/Queries: selection to
display additional tables and select the necessary fields.

4. If the table contains numeric fields, either detailed or summary information may be
specified for the query.

5. Finally, name the new query and click on the Finish button.
As a final note, Forms and Reports can be created based on existing queries.

3

LAB 4
CREATING TABLE FORM

Lab objective: to study process of creating table form

Creating and Running a Data Entry Form
Data entry forms are the primary means of entering data into tables in the database.

In a previous section, we described how to add data to a table using a spreadsheet-like
view of the data. Data entry forms offer a more user-friendly interface by adding labels
for each field and other helpful information.

Access provides several different ways of creating data entry forms. These include
creating the forms by hand using a Design View as well as a number of wizards that walk
the user through the forms creation process. In this section, we cover the basic steps for
using a wizard to create a data entry form.

Creating a Single Table Form using the Wizard
In this example, we will create a simple data entry form for the Customer table. To

begin the process, click on the Forms tab on the Access main screen. As with the other
components in Access, there are buttons for creating a New form, Open an existing form
and Design an existing form. For this example, click on the New button to create a new
form.

A New Form dialog box will appear with several options for creating a new form.
For this tutorial, choose the Form wizard. At the bottom of the dialog box, there is a
prompt to supply the name of the table or query to be used for the new form. In this case,
select the Customer table as in the following figure and then click on the OK button.

In the next step of the Form wizard, we need to specify the fields from the Customer
table that will appear on the form. In this case, we want all of the fields to appear. Move
each of the fields from the Available Fields side over to the Selected Fields
side as in the following figure. Then click on the Next button.

3

Forms can have several different layouts or arrangement of the labels and fields on
the screen.
 Columnar - Places the labels to the left of each field. This is similar to a paper

form. This layout is suitable for viewing data one record at a time.
 Tabular - Places the field labels at the top of the screen and the records are

displayed below. This is similar to how a spreadsheet would display the data and is
suitable for displaying multiple records of data at a time.

 Datasheet - The data appears in the same fashion as when viewing or adding data
to a table.

 Justified - Places the labels above each field with the fields spread out on the form.

This is suitable for viewing a single record at a time as with the columnar layout.
For this example, choose the columnar layout as shown in the figure below and click on
the Next button.

3

Access has several sample display styles that determine how the form will appear,
including elements such as fonts, colors and the background used in the form. For this
example, select the Standard style as shown below and click on the Next button.

As a final step, give this new form the name: CustomerDataEntry and then
click on the Finish button as shown below:

3

The new form will be created by the wizard and then opened. It should appear as in
the figure below:

Use the tab key to navigate between fields in the form. To move to the next or
previous record, use the record navigation bar at the bottom of the form:

The buttons on the navigation bar perform the following functions:
Go to the first record.
Go to the previous record.
Go to the next record.
Go to the last record.
Go past the last record to add a new record.

To close the form and return to the Access main screen, pull down the File menu
and choose Close.

To open the form at any time, highlight the form name under the Forms tab on the
Access main screen and click on the Open button.

3

Exercise: Creating a Single Table Form

For this exercise, we will create a data entry form for the Accounts table created in
a previous exercise.

1. Click on the Forms tab on the Access main screen and then click on the New
button to create a new form.

2. Select the Form wizard and select the Accounts table. Then click the OK
button.

3. Select all of the available fields and click on the Next button.
4. Choose a Tabular layout and click on the Next button.
5. Choose the Standard style and click on the Next button.
6. Name the form: AccountsDataEntry

Then click on the Finish button to create, save and view the new form.

The new form is shown in the figure below:

Close the form and return to the Access main screen, by pulling down the File
menu and choosing Close.

Review of Creating and Running a Data Entry Form
The basic steps for creating a simple data entry form are:

1. Choose a table and a form wizard
2. Specify the fields (columns) that will appear in the form
3. Specify the layout for the form
4. Specify the style (fonts/colors, etc.) for the form
5. Save, create and run the new form

3

In this section we covered the basic steps required to create and run a data entry
form. Access provides wizards which are adept at building simple forms with a minimal
amount of work. More advanced work on forms would concentrate on using the Design
View to change a form's appearance and to add or remove fields and labels once a form is
created.

3

LAB 5
CREATING TABLE REPORT

Lab objective: to study process of creating table report

Creating and Running a Report
Reports are similar to queries in that they retrieve data from one or more tables and

display the records. Unlike queries, however, reports add formatting to the output
including fonts, colours, backgrounds and other features. Reports are often printed out on
paper rather than just viewed on the screen. In this section, we cover how to create
simple reports using the Report wizard.

Creating a Single Table Report using the Wizard
In this example, we will create a simple report for a single table using the Report

wizard. As with the Queries and Forms, we begin by selecting the Reports tab from the
Access main screen.

To create a new report, click on the New button. The New Report dialog box will
appear as shown below. Select the Report wizard and then select the Customer
table as shown below. Then click the OK button.

In the next step of the Report wizard, we need to specify the fields from the
Customer table that will appear on the report. In this case, we want all of the fields to
appear. Move each of the fields from the Available Fields side over to the
Selected Fields side as in the following figure. Then click on the Next button.

3

In the next step, we have the opportunity to add Grouping Levels to the report. A
grouping level is where several records have the same value for a given field and we only
display the value for the first records. In this case, we will not use any grouping levels so
simply click on the Next button as shown below.

In the next step, we are given the opportunity to specify the sorting order of the
report. For this example, we will sort the records on the CustomerID field. To achieve
this, pull down the list box next to the number 1: and choose the CustomerID field as
shown in the figure below. Then click on the Next button.

3

The next step is to specify the layout of the report. The three options are:
 Columnar - Places the labels to the left of each field. This is similar to a paper

form.
 Tabular - Places the field labels at the top of the report page and the records are

displayed below. This is similar to how a spreadsheet would display the data.
 Justified - Places the labels above each field with the fields spread out on the

report page.
Generally, reports use the tabular layout. For this example, choose Tabular

layout and set the page Orientation to Landscape so that all of the fields will fit
across one page. This is shown in the figure below. Click on the Next button to
continue.

In the next step, the style of the report can be selected. For this example, choose
the Corporate style and click on the Next button to continue.

3

Finally, give a name for the new report: CustomerReport and then click on the
Finish button to create, save and display the new report.

The output from the report is shown in the figure below. Note that on some
screens, the last field, Zip, may not display without scrolling over to the right.

3

Once the report is displayed, it can be viewed, printed or transferred into Microsoft
Word or Microsoft Excel. The button bar across the top of the screen has the following
functions:

Print the report
Zoom into a region of the report
Display the report as one, two or multiple pages
Zoom into or out of the report
Transfer the report into MS Word
Close the report

To close the report and return to the Access main screen, pull down the File
menu and choose Close or click on the Close button.

Exercise: Creating a Single Table Report
For this exercise, we will create a report showing all of the Accounts information.

1. From the Reports tab on the Access main screen, click on the New button.
2. Select the Report wizard, select the Accounts table and then click the OK button.
3. Select all of the fields in the Accounts table by moving them all over to the

Selected Fields side and then click Next
4. Group the report by CustomerID by clicking on the CustomerID field and then

clicking on the right arrow button. This is shown in the following figure:

3

Click on the Next button.
5. Choose to sort the report on the AccountNumber field. Note that a new button will

appear called Summary Options.

Click on the Summary Options button. Choose the Balance field and select
the Sum option. Choose the option to show both Detail and Summary data.
Then click on the OK button.

3

Click on the Next button.
6. Choose a Block layout and click on the Next button.
7. Choose the Corporate style and the click on the Next button.
8. Finally, name the report: AccountsReport and click on the Finish button to

create, save and run the report.
The output from the AccountsReport is shown below:

Note the Grouping at the level of the CustomerID and the Sum for each customer's
balances.

To close the report and return to the Access main screen, pull down the File
menu and choose Close.

3

Review of Creating and Running a Report
As can be seen in the report exercise, there are many ways to create reports to

show summarization, sorting and layout of the data. Further study of Reports will show
how to modify the layout using the Design View. Students are encouraged to work with
the Report wizards to create different styles and types of reports.

In this tutorial, we have covered the basics for creating an Access database
including tables with data, queries to retrieve data, forms to enter data and reports to
display and summarize data.

Students are encouraged to further their Access knowledge and skills by working
through more advanced tutorials and by reading the on-line help and Access
documentation.

3

LAB 6
CREATING MACROS

Lab objective: to study process of creating macros

If you find yourself doing the same routine task over and over again, you might
want to consider creating a macro to complete the task for you. A macro helps you
perform routine tasks by automating them. Instead of manually performing a series of
time-consuming, repetitive actions, you can record a single macro that does the entire
task all at once for you. For example, instead of clicking the Reports icon in the Objects
bar in the database window, finding and opening a specific report, printing it, and then
closing it, you could create a macro to print the report with the click of a single button.

A macro is a set of one or more actions that perform a particular operation, such as
opening a form or printing a report. Macros can help you to automate common tasks. For
example, you can run a macro that prints a report when a user clicks a command button.

In a way, you can think of macros as a very simple introduction to programming
because you can use them to create automated tasks and somewhat complex procedures.
Best of all, you don't have to know a single line of code Access provides you with
everything you need to write a macro.

Figure 1. You create macros

In some programs, such as Microsoft Excel or Word, you can create macros with a
"macro recorder" to record your commands, keystrokes, and mouse clicks. Unfortunately,
there isn't a "macro recorder" or Macro Wizard to help you create a macro in Microsoft
Access. Instead, you create macros by entering the actions and arguments directly in
Macro Design view, shown in Figure 1. Don't worry it's not as difficult as it sounds.
Working in Macro Design view really isn't all that different from working in Table
Design view it's where you define and edit your macro objects.

Simple macros that automate a single task, such as opening a form or report, are
incredibly simple to create we'll create such a macro in this lesson. More complicated
macros with several steps or procedures may require a little bit of planning. Before you
create a complicated macro, think about what you want the macro to do and the

3

individual actions that are required to complete this operation. Practice the steps needed
to carry out the operation and write them down as you go it will make writing the macro
a lot easier.

And so, without any further ado, let's create our first macro.
1. Start Microsoft Access, open the Lesson 10 database, click the Macros icon

in the Objects bar, and click the New button.
The Macro1: Macro window appears, as shown in Figure 1. The Action cell is

where you tell Access what you want the macro to do.
2. Click the first blank Action cell, then click the list arrow.
A list of actions appears. An action, or command, is the basic building block of a

macro it's an instruction that tells Access what you want the macro to do. There are more
than 50 different actions you can choose from. When you start creating your own macros
you will almost certainly want to refer to Appendix to help you find the right action.

3. Scroll down and select the OpenForm action.
The OpenForm action is added to the first line of the macro window. Most of the

time you will have to give Access more information about how to execute each action.
For example, here we will have to tell Access which form to open with the OpenForm
action. You use arguments to supply Microsoft Access with information about how to
carry out the action. Each type of action has its own set of arguments, which appear in
the Action Arguments panel, located at the bottom of the macro window.

4. Click the Form Name text box in the Action Arguments panel, click the list
arrow, and select frmEmployees.

That's the only argument we need to specify for this exercise, but notice that there
are additional arguments for the OpenForm action, such as the View argument, which
lets you select the view in which to open the form (Form view, Design view, or Print
Preview).

If you want, you can type a comment to explain the action in the Comment column.
If you've ever had any programming experience, the Comment column is the same as a
remark statement.

5. Click the first blank Comment cell and type This macro opens the
frmEmployees Form.

Comments are completely optional, but they do make your macros easier to
understand, especially if other users will edit them.

6. Click the Save button on the toolbar, save the macro as mcrEmployees and
click OK.

You're finished working in the Macro window for now so...
7. Close the Macro window.
Time to test your new macro. The Macros icon in the Objects bar in the Database

window should be selected.
8. Double-click the mcrEmployees macro.
Access runs the mcrEmployees macro and opens the frmEmployees form.
9. Close the frmEmployees form.

Editing a Macro

3

Figure 2. The mcrEmployees macro with two additional actions

Figure 3. A message boxthe result of the MsgBox action

Some Microsoft Access tasks require several steps. For example, a particular task
might require you to (1) open a form, (2) select a specific record, (3) select a specific
field in that record, and then (4) copy the information in that field to the Windows
clipboard. Macros can contain as many actions as necessary to automate even the most
complicated tasks. Each action appears in its own row and is evaluated and executed in
the order in which it appears in the Macro window, from top to bottom.

In this lesson you will edit the macro you created in the previous lesson to change
its arguments and add some more steps or actions.

1. Select the mcrEmployees macro and click the Design button.
The mcrEmployees macro opens in Design view. Let's add two more actions to this

macro.
2. Click the Action cell just below the OpenForm action, click the list arrow,

scroll down the list, and select Maximize.
When you run the macro, the Maximize action will maximize the window so that it

fills the entire Microsoft Access window. Because the Maximize action is so simple and
straightforward, it doesn't have any additional arguments.

Let's add another action to the mcrEmployees macro.
3. Click the Action cell just below the Maximize action, click the list arrow,

scroll down, and select MsgBox.
When you run the macro, the MsgBox action will display a message box that

contains a warning or an informational message. The Message argument is the most
important argument for the MsgBox action because it determines the text that is
displayed in the message box.

4. Click the Message argument box and type Please make sure that you
remember to add the employee's phone number!.

There are several other arguments you may want to specify for the MsgBox action,
such as the type of icon that is displayed in the message box (None, Critical, Warning?,
Warning!, or Information) and the text that is displayed in the title bar of the message
box.

3

5. Click the Type argument box, click the list arrow, and select Information.
Click the Title argument box and type Notice.

Your macro should look like the one shown in Figure 10-2. Remember that actions
are evaluated and/or executed in the order in which they appear, so the mcrEmployees
macro will (1) open the frmEmployees form, (2) maximize the form window, and (3)
display the message box.

6. Click the Save button on the toolbar.
That's all the we need to do for this lesson.
7. Close the macro window.
8. Double-click the mcrEmployees macro.
Sure enough, the mcrEmployees macro (1) opens the frmEmployees form, (2)

maximizes the form window, and (3) displays the message box, as shown in Figure 3.
9. Click OK to close the message box, then click the Close button to close

the frmEmployees form.

Working with Macro Groups

Figure 4. Two macrosthe Open frmEmployees macro and the Print
rptEmployeeSales macrowithin a single macro group.

Figure 5. The Run Macro dialog box.

If you are creating lots of macros, you might want to consider organizing them into
a macro group to help you manage them. A macro group stores several related macros
together in a single macro object. When you create a macro group, you must give each
macro in the macro group its own unique name to identify where each macro starts and
ends. You do this by entering the macro names in the Macro Name column, which you
display by clicking the Macro Names button on the toolbar.

When you combine two or more macros within the same macro group, you must
run them separately, by referring to the macro group name, followed by the macro name.
For example, mcrEmployees. mcrEmployees frmEmployees refers to the Open
frmEmployees macro in the mcrEmployees macro group.

In this lesson you will learn how to group several related macros together in a
macro group.

3

1. Select the mcrEmployees macro and click the Design button.
In order to work with macro, you need to display the Macro Name column.
2. Click the Macro Names button on the toolbar.
First you need to give the macro you created in the previous two lessons a name.

The cursor is already positioned in the Macro Name cell of the first row.
Note: Always enter the macro name in the Macro Name column, next to the Action

where the macro starts.
3. Type Open frmEmployees in the first blank cell in the Macro Name column.
The macro name "Open frmEmployees" identifies the macro you created in the

previous two lessons. To create another macro in the same macro group, type its name in
the Macro Name column next to the first action of the new macro.

4. Press the key three times.
The cursor should be positioned in the Macro Name column next to the first blank

Action row. This is where you will add another macro to the macro group.
5. Type Print rptEmployeeSales.
"Print rptEmployeeSales" is the name of the new macro we will create.
6. Click the Action cell to the right of the Print rptEmployeeSales macro name,

click the list arrow, scroll down, and select OpenReport.
Similar to the OpenForm action, which opens a form, the OpenReport action opens

a report. Next, you need to specify the arguments for the OpenReport action.
7. Click the Report Name text box in the Action Arguments panel, click the list

arrow, and select rptEmployeeSales.
This macro will open the rptEmployeeSales report. Notice Print appears in the

View argument boxthis will send the rptEmployeeSales report directly to the printer.
Let's add a comment to this new macro.

8. Click the blank Comment box in the Print rptEmployeeSales macro row and
type This macro prints the rptEmployeeSales report.

You want to add one more action to the Print rptEmployeeSales macro.
9. Click the Action cell just below the OpenReport action, click the list arrow,

scroll down, and select MsgBox.
You need to tell Access what you want the message box to say.
10. Click the Message argument box and type The Employee Sales report has

been sent to the printer.
Let's specify several additional arguments for the MsgBox action, such as the type

of icon that is displayed in the message box.
11. Click the Type argument box, click the list arrow, and select Information.

Click the Title argument box and type Notice.
Your macro should look like the one shown in Figure 4.
12. Click the Save button on the toolbar and close the macro window.
Let's test our new macro. When you combine several macros within the same

macro group you must run them separately using the Tools command on the Access
menu.

Note: Don't run a macro group by double-clicking it or selecting it and clicking
Run. Doing so will run every macro in the macro groupoften with disastrous results!

13. Select Tools Macro Run Macro from the menu.
The Run Macro dialog box appears, as shown in Figure 5. Here's where you select

the specific macro you want to run.
14. Click the Macro Name list arrow, select mcrEmployees.Open

frmEmployees, and click OK.

3

Access runs the Open frmEmployees macro.
15. Click OK to close the message box and close the frmEmployees form.
If you want, go ahead and repeat Step 13 and run the Print rptEmployeeSales

macro. Make sure your computer is connected to a printer, as this macro will send a copy
of the rptEmployeeSales report to the printer.

3

LAB 7
CREATING CONDITIONAL EXPRESSIONS AND ASSIGNING A MACRO

Lab objective: to study process of creating conditional expressions, assigning a
macro to an event, assigning a macro to a keystroke combination

Assigning a macro to an event

Figure 6. Adding a command button to run a macro.

Figure 7. Assigning a macro to a command button's "On Click" event.

Running macros from the Database window or menu is a pain in the neck. That's
why most database developers assign macros to controlsparticularly, buttonsso that when
a user clicks the button or control, a macro is activated.

1. Open the frmEmployees form in Design view.
You want to add a command button to the frmEmployees form to open a report that

displays the sales for each employee. First you need to add the command button.
2. Click the Toolbox button, if necessary, and click the Command Button

button on the Toolbox.
The mouse pointer changes to a , indicating that you can click and drag the

command button control onto the form.
3. Place the pointer below the DOB field label and click and drag the

pointer down and to the right to create a command button like the one in Figure 10-6.
Click Cancel if the Command Button Wizard appears.

Let's give this button a more meaningful text label.
4. Make sure that the command button is still selected, then click its text label

and replace the text with Sales Report. Click anywhere outside of the command button
when you're finished.

3

We're ready to assign a macro to the buttonto do this you will need to display the
command button's Properties.

5. Select the command button, click the Properties button on the toolbar, and
click the Event tab.

The lists all the events to which you can assign a macromost of them you will
never use, as you can see in Table 1.

6. Click the On Click box, click the list arrow, and select mcrSales, as shown
in Figure 7. Close the Properties dialog box when you're finished.

Let's see how our new command button works.
7. Click the View button on the toolbar to switch to Form view, then click the

new Sales Report button.
Microsoft Access runs the mcrSales macro and displays the Employee Commission

Report for the current employee. Let's close the report and save our changes...
8. Close the Employee Commission Report and then click the Save button.

Table 1. Event Properties That Can Trigger Macros

Event Description

Before Update
Macro or function that runs when data in a field or record is changed but
before the changes are actually saved to the database. Often used to
validate data.

After Update Macro or function that runs when data in a field or record is changed and
is saved to the database.

On Change Macro or function that runs when the contents of a text box or combo box
changes or when you move from one page to another page in a tab control.

On Enter

Macro or function that runs when a control first gets the focus (is
selected). The Enter event occurs before the focus moves to a particular
control (before the GotFocus event). You can use an Enter macro or event
procedure to display instructions when a form or report first opens.

On Exit Macro or function that runs when a control loses focus (is deselected) on
the same form.

On Got Focus Macro or function that runs when a control gets the focus (is selected).
On Lost Focus Macro or function that runs when a control loses the focus (is deselected).

On Click Macro or function that runs when a control is clicked.
On Dbl Click Macro or function that runs when a control is double-clicked.

On Mouse
Down

Macro or function that runs when the user presses the mouse button.

On Mouse
Move

Macro or function that runs when the user moves the mouse over a control.

On Mouse Up Macro or function that runs when the user releases the mouse button.
On Key Down Macro or function that runs when the user presses a key on the keyboard.

On Key Up Macro or function that runs when the user releases a key on the keyboard.

On Key Press Macro or function that runs when the user presses an ANSI key on the
keyboard.

Creating Conditional Expressions

3

Figure 8. The Expression Builder can help you enter your macros.

Figure 9. A conditional expression.

Figure 10. The updated mcrSales macro.
A condition takes action based on a certain condition. For example, if an

employee's weekly sales are more than $2,500, then a condition could calculate a
5-percent commission bonus for the employee; otherwise, it wouldn't calculate a bonus.
If you're at all familiar with programming, a condition is similar to an If...Then statement.

You enter conditions in the Condition column in the Macro window. If a condition
is true, Access executes the action in that row. If a condition isn't true, Access skips the
action in that row and moves to the next row. Conditions often compare values in a
specific control on a form or report to a number, date, or constant. For example, the
expression in Figure 9 evaluates if the value in a City field is not equal to "Minneapolis."
Make sure that you use the proper Microsoft Access syntax when referring to controls in
forms or reports.

1. Make sure you have the frmEmployees form from the previous lesson
open. Click the View button on the toolbar to switch to Design view.

We want to add a conditional expression to the mcrEmployees macro. If a
macro is assigned to a control on a form or report, you can open and edit the macro
directly from the form or report without having to access it through the Database
window.

2. Select the command button, click the Properties button on the toolbar,
click the Event tab, and click the On Click box.

A Build button appears in every event property. Click this button to create

3

or modify the macro or Visual Basic procedure assigned to the event.
3. Click the Build button.
The mcrSales macro appears in Design view.
4. Click the Conditions button on the toolbar.
The Condition column appears. This is where you need to add the conditions

you want Access to evaluate before it executes an action. It's often easier if you use
the Expression Builder to help you create your macro conditions.

5. Click the first blank cell in the Condition column and click the Build
button on the toolbar.

The appears, as shown in Figure 8.
6. Double-click the Forms folder in the bottom-left window,

double-click the All Forms folder, then click thefrmEmployees folder.
When you select the frmEmployees folder in the left window, the middle

window displays all the controls in the selected form.
7. Scroll down the middle window, and find and double-click the City

control.
Access adds Forms![frmEmployees]![City] to the expression area. Now you

need to specify how you want to evaluate the City field.
8. Click in the Expression box and add "Minneapolis".
Your expression should look similar to the one in Figure 9.
9. Click OK.
The Expression Builder dialog box closes. The condition you entered will

execute the OpenForm action only if the City field is not equal to "Minneapolis."
The condition you entered only affects the first row or action in the macrothe other
actions in the macro will execute without being evaluated. If you want to evaluate
the other actions, they must each have their own statement in the Condition
column. Let's add some more actions to the macro.

10. Copy the first row in the Condition column and paste it in the second
and third rows.

Add another action that will execute only if the City is not equal to
"Minneapolis."

11. Click the Action cell in the second row, click the list arrow and select
MsgBox. Click the Message argument box and type This is the current commission
for non-Minneapolis employees.

Next you need to add an action to perform if the City is equal to
"Minneapolis."

12. Edit the expression in the third row of theCondition column so it
reads [Forms]![frmEmployees]![City]="Minneapolis".

Your macro should look like Figure 10. Now you need to specify the action
to perform if the condition is true.

13. Click the Action cell next to the condition you edited, click the list
arrow, and select MsgBox. Click the Message argument box and type Call Linda
Ross for the Minneapolis Commission report.

We're finished modifying the macro.
14. Save your changes and close the Macro Design window. Click the

View button on the toolbar to display the form in Form view.
Let's test our conditional macro.
15. Find a record whose City field is NOT "Minneapolis" and click the

Sales Report button. Click OK and then close the commission report. Click the

3

Save button and close the frmEmployees form.

Assigning a Macro to a Keystroke Combination

Figure 11. The AutoKeys

Sometimes, instead of assigning a macro to a command button, you may want to
assign it to a specific keystroke combination, such as Ctrl + D. Assigning a keystroke
combination to a macro makes it fast and easy to access you can execute the macro at any
time by pressing its assigned keystroke combination.

Assigning a keystroke combination to macro can be a somewhat complicated
process. There are two things you need to know about assigning a macro to a keystroke
combination:

 You must create a special macro group, named , which contains all
your keystroke-combination macros.

 You type the keystroke combination to which you want to assign the
macro in the Macro Name column of the AutoKeys macro window. Enter the
keystroke combinations using the examples in Table 2. For example, to assign a
macro to the keystroke combination Ctrl + D, you would name the macro ^D.
In this lesson you will learn how to create an AutoKeys macro to assign a macro to

a keystroke combination.
1. In the Database window, click the Macros icon in the Objects bar and

then click the New button.
The Macro window appears. You need to make sure the Macro Name

column is displayed in order to tell Access which keystroke combination you want
to assign to the macro.

2. Click the Macro Names button on the toolbar, if necessary.
Now you need to type the keystroke combination to which you want to

assign the macro. Table 10-2 shows the key combinations you can use to make key
assignments in an AutoKeys macro group. We want to assign a macro to the
keystroke combination Ctrl + L. Here's what you need to enter:

3. Type ^L in the first blank Macro Name cell, as shown in Figure 11.
The name ^L refers to Ctrl + L. The ^ (caret) signifies the Ctrl key and the

"L" signifies the "L" key.

Note: If you assign a macro to a keystroke combination that Microsoft
Access is already using (for example, Ctrl + X is the keystroke combination for the
Cut command), the macro you assign to this keystroke combination will override
the Microsoft Access keystroke combination assignment.

Now we need to specify what we want the macro to do.

3

4. Click the first blank Action cell, click the list arrow, and select
RunApp from the list.

The RunApp action starts another program, such as Microsoft Excel or
Word. We want the RunApp action to start the Calculator program. You need to
specify the name and location of the program you want to run in the Action
Arguments area.

5. Click the Command Line text box and type calc.exe.
Now let's save the macro, making sure that we name it AutoKeys.
6. Click the Save button on the toolbar, type AutoKeys, and click OK.
We're ready to test our AutoKeys macro.
7. Press Ctrl + L.
Microsoft Access executes the macro assigned to the Ctrl + L keystroke

combination and starts the Calculator application.
8. Close the AutoKeys macro and database.

Give yourself a pat on the back if you've gotten through this tutorial. You've just
learned how to automate your Microsoft Access databases to work more like a
full-featured application instead of a dull, static database.

Table 2. The SendKey Syntax

Heading Heading
Ctrl + Any Key ^ (For example, enter ^E for Ctrl + E.)
Shift + Any Key + (For example, enter +E for Shift + E.)
Alt % (For example, enter %E for Alt + E.)
Enter {ENTER}
Esc {ESC}
Tab {TAB}
Insert, Delete {INSERT} or {INS}, {DELETE} or {DEL}
Page Down, Page Up {PGDN}, {PGUP}
Home, End {HOME}, {END}
Arrow Keys {UP}, {DOWN}, {LEFT}, {RIGHT}
Caps Lock {CAPSLOCK}
Function Keys {F1}, {F2}, {F3}, etc...

Summary

Creating and Running a Macro
 To Create a Macro: In the database window, click the Macros icon in the

Objects bar and click the New button. Click the first blank Action cell, click the list
arrow, and select the action you want the macro to perform. Specify any required
arguments for the action in the Action Arguments area. Repeat for each additional action
you want the macro to execute. Click the Save button on the toolbar, give your new
macro a name, and click OK.

 To Run a Macro: Click the Macros icon in the Objects bar and double-click
the macro you want to run.

Editing a Macro
 To Modify a Macro: In the Database window, click the Macros icon in the

3

Objects bar, select the macro you want to edit, and click the Design button.

Working with Macro Groups
 To Create a Macro Group: Create a new macro or edit an existing macro,

then click the Macro Names button on the toolbar. Type the macro name in the Macro
Name column next to the action where the macro starts. If necessary, add the macro
actions or edit the existing macro actions. Save the macro and close the macro window.

 To Run a Macro in a Macro Group: Select Tools Macro Run Macro
from the menu, click the Macro Name list arrow, select the macro you want to run, and
click OK.

Assigning a Macro to an Event
 To Assign a Macro to a Control on a Form or Report: Open the form or

report in Design view, click the control to which you want to assign the macro and click
the Properties button on the toolbar. Click the Event tab, click in the box for the type of
event you want to assign to the macro, then click the list arrow and select the macro you
want to assign to the event. Close the Properties dialog box and save the form or report.

Creating Conditional Expressions
 To Create a Conditional Expression in a Macro: Create a new macro or edit

an existing macro. In Design view, click the Conditions button on the toolbar and click
the Condition cell next to the action you want to evaluate. Enter the conditional
expression in the Condition cell, using proper Access syntax. You can use the Expression
Builder to help you create the expression by clicking the Build button on the toolbar.
Repeat these steps for each action you want to evaluate. Save the macro and close the
macro window.

Assigning a Macro to a Keystroke Combination
 To Assign a Macro to a Keystroke Combination: Create a macro group

named AutoKeysthis will store all the macros that are assigned to a keystroke
combination. Click the Macro Names button on the toolbar. Type the keystroke
combination in SendKey syntax in the Macro Name column next to the Action where the
macro starts.

3

LAB 8
CREATING MODULE

Lab objective: to study process of creating module

Most of the things that your system needs to do can be accomplished using standard
Access functions. The sorts of things you might need Visual BASIC for Applications
(VBA) for are:

 Requerying subforms and combo-boxes (discussed above)

 Enabling, disabling and hiding controls (discussed in the Forms section)

 Checking for overlapping appointments (discussed in the Practical Examples
section)

 Displaying confirmation messages using message boxes

 Copying values from one field or form to another

VBA functions are linked to events in your system, such as buttons being clicked, fields
being changed, or even forms being opened and closed. To enter the code, go to the
Properties for your chosen object and click the Event tab. In there will be a list of all of
the events for the object (not all objects have the same events – forms will have an
OnResize event, for example, but buttons won’t, because they aren’t resized in normal
use). Click on your chosen even, and the ellipsis (…) button will appear to the right.
Click that button and choose Code Builder.

3

Message Boxes

A useful feature of VBA is that you can display pop-up messages to convey information
to the user, and ask for confirmation for certain actions, such as closing the system.
These are known as message boxes and there is a command in VBA called msgbox() that
allows you to control their appearance.

If you just want to display a message (with an OK button), the syntax is quite simple.
For example, to display the word Hello in a message box, the command would be:

msgbox(“Hello”)

Note that any text you want to display must be enclosed in speech marks.

There are more options that you can select, but be aware that if you enter more than just
the message, then the msgbox() command returns a value, so you use a variable or
another command, such as if to handle the value it returns.

As you type a command, the VBA editor will help you with the options, displaying
drop-down lists of all the options at each point – the only thing you really need to
remember is that all of the options are separated by commas. You can also use the help,
of course, by highlighting your command and pressing the F1 key.

If you want to display a message box, with the title “Confirmation”, the message “Are
you sure?” and Yes and No buttons, for example, then you would use the following code:

msgbox("Are you sure?",vbYesNo,"Confirm")

Remember that all text values need to be in speech marks. Remember that when you use
msgbox() in this way, it returns a value, so you can’t use the command on its own –
probably the best thing to do would be to use if, so if you wanted to add some
confirmation messages to your system, you could do something like this (on the OnClick
event of your Exit button):

If MsgBox("Are you sure you want to exit?", vbYesNo, "Confirm Exit") = vbYes Then
Application.Quit

(this is in a small font so that it all fits on one line – lines in the VBA editor are much
longer).

The If Command

The If command is used to make decisions in your macro, and can be used either on one
line, or as a more complex version with an else clause. The general format is either:

If test_condition then action

Or, if you want to have an alternative action:

If test_condition then
action

Else

3

other action
End if

Setting the Values of Fields

You can set the value of a particular field (or, indeed, any other property, such as
visibility, or whether the field is enabled) from your code quite simply by accessing the
properties of them using the name that is at the top of the All tab in the properties. For
example:

field_name.value = “Hello”
field_name.value = date()
field_name.value = other_field.value
field_name.enabled = TRUE
field_name.visible = FALSE

Remember that you need to enclose all text values in speech marks. You can also use
functions such as date(), and the predefined constants TRUE and FALSE (which do not
need to be in speech marks).
Practical Examples
This section of the booklet demonstrates some approaches you could take to common
problems in Access. It goes without saying that you should not copy the databases or any
of the code without crediting it in your project.
Clashing/Overlapping Appointments
A common type of A level project is a booking system created in Access. One of the
most important functions such a system will perform is to prevent double-bookings or
clashes. This can be more or less tricky, depending on how the appointments are made.
Appointments or bookings fall into two basic categories - either discrete appointments
(e.g. a doctor's surgery, where a patient is given a 10-minute slot), or bookings with a
start and end time/date (e.g. a booking in a holiday cottage, with arrival and departure
dates).
If you're booking hour lessons, or discrete appointments of some sort, then you can use
referential integrity to stop double-bookings. If you're booking something like holiday
cottages, on the other hand, where there are arrival or departure dates and the bookings
can overlap, then it's a little more tricky. On this page I shall propose the methods I
would use to prevent double-bookings in each case.

Discrete Appointments
In the diagram below you can see the tables and relationships from appointments.mdb
(available in Shared Document). It's the classic three-table booking system, with

3

patients, doctors, and a linking appointments table. I've also added a fourth table
(tbl_available) that contains a list of all the available appointment slots for each doctor.
To make things easier, in this example the surgery has the same appointment times each
day, although you could also add the day of the week if you wanted to vary their times.

Referential integrity will prevent the receptionist from making a booking for a doctor in a
time slot that doesn't exist in tbl_available, but what happens if the appointment is
already taken on that particular day?

One of the tidiest ways to prevent double-bookings is to use a combo-box to present the
user with only the available appointments for a given day (see the form on the left). This
can be populated from a query, and requeried whenever the date and/or doctor are
changed.

Although the idea of the query - to find available slots on a given day - sounds quite
simple, it's not as easy as it first appears. This is because you're looking not just for
bookings that don't exist, but bookings that don't exist on a particular day.

My solution, therefore, uses two queries - one that finds the appointments that have been
made for a particular doctor on a given day (straightforward enough), and then a second
one that effectively subtracts these from the complete list of available slots (i.e. those in
tbl_available), to give the available appointments for the chosen day.

The illustration to the right shows this second query. Note that it contains a table and a

3

query - you will have to create the relationship yourself (you do this by dragging the time
field from the table to the query, as you would if you were joining two tables). You also
need to change the Join Properties (right click on the line joining the table and the
query), to select the middle option - i.e. to show all the records from tbl_available...

Once you've done that, the query itself is quite simple - you just want all the times for
your doctor from tbl_available where there isn't a corresponding time in
qry_appointments_on_day - i.e. where the time is NULL.

If you now use the form to make a booking for a particular doctor on a given day, you
will notice that the time disappears from the list once you've clicked Save, so that that
slot can't be used again.

Variable-Length Bookings

Preventing clashes with variable-length bookings is a little more involved. If you've
trawled the newsgroups and Access FAQs, then you may have come across the cartesian
product method for picking up double-bookings. The problem with this approach is that
you do the checking after the record has been saved, by which time it is too late.

In clash_test.mdb (in Shared Documents) I've proposed a method for preventing the user
from saving clashing bookings in the first place. It isn't overly elegant, and you may
need to tweak the events on which the query is re-run to suit your needs, but hopefully
it'll give you some idea of how to approach a solution.

What happens is that the form used to enter the date has two hidden fields containing the
dates of the latest prior booking, and the first subsequent booking, in the same room.
When the Save Record button is clicked, a macro compares the dates and stops the save if
the dates overlap.

The database itself is just a simple three-table affair, with tables for rooms, customers,
and bookings. Generally, things like customer codes are frowned upon, but I've just used

3

them here for simplicity. I've added fields for the number of guests in the party, but I
haven't actually done anything with them - the point of the database is only to
demonstrate the double-booking validation.

On top of the bookings table, I've created a form (shown to the left) that contains the
fields in the table. I've used combo boxes for the customer and room number to make it
easier to select rooms and customers that exist and maintain referential integrity.

Underneath the Save Record and Cancel buttons are two invisible combo-boxes that are
populated from the two queries, qry_previous_booking and qry_next_booking. The
visible property of both combo-boxes is set to False so that they are hidden.

The query qry_previous_booking finds the latest prior booking in the same room, based
on the dates and room you enter. Because you might change the dates or the room
number, you need to put a .requery command on the LostFocus or Change events to
re-run the query. All that does is ensures that the next and previous bookings always
relate to the rooms and dates you have entered.

The next step in the validation process is to check that the appointments don't overlap.
This needs to be done before the record is saved, so that you can warn the user and
request alternative dates or a different room before it's too late. The easiest way to do
this is to add the Save button using the normal wizard, and then add some VBA code
afterwards.

3

The code just uses a simple if... then... else... loop to display a message if the
appointment clashes with another, or save the record if it doesn't. To determine whether
the start of the new booking comes before the end of the previous one, or whether the end
of the new booking comes after the start of the next one, I've used the DateDiff()
function. This will give either a positive or a negative answer, depending on which date
comes first. You might find it simpler to try a simple comparison, but I've found that >
and < don't always work reliably with dates.

The code for the Save button is shown right. Note that you can put most of the if
statements on one line, and omit the End Ifs - I've just done it that way so that the code
isn't too wide to fit on the screen here. One last thing to bear in mind is that the record
will still be saved if you click on the button at the top of the window to close the form.
You can get around this either by disabling the Close button (in Form properties), or by
adding similar code to the form's Close event to check for clashes there too.

3

TASK VARIANTS

1. Private Banking Operational Data
2. Investment Banking Operational Data
3. Retail Banking Operational Data
4. Combined Investment and Retail Banking Operational Data
5. Debt collection.
6. Debt management.
7. Online banking.
8. Credit Card Online.
9. Mobile Banking.
10. e-Monies Electronic Fund Transfer.
11. Online Payment of Excise & Service Tax (9).
12. Phone Banking.
13. Bill Payment.
14. Smart Money Order.
15. Card to Card Funds Transfer.
16. Funds Transfer (e-Cheques).
17. Anywhere Banking.
18. Internet Banking.
19. Mobile Banking.
20. Bank@Home.

3

APPENDIX A
MACRO ACTION REFERENCE

Action Description

AddMenu Adds a menu to a custom menu bar for a form or report. Each menu
on the menu bar requires a separate AddMenu action.

ApplyFilter Applies a filter or query to a table, form, or report.

Beep Causes the computer to beep.

CancelEvent Cancels the event that caused the macro to run.

Close Closes the specified window or the active window if none is
specified.

CopyObject Copies the specified database object to a different Microsoft Access
database or to the same database with a new name.

DeleteObject Deletes the specified object or the object selected in the Database
window if no object is specified.

Echo Hides or shows the results of a macro while it runs.

FindNext Finds the next record that meets the criteria specified with the most
recent FindRecord action or Find dialog box. Use to move
successively through records that meet the same criteria.

FindRecord Finds the first or next record that meets the specified criteria. Records
can be found in the active form or datasheet.

GoToControl Selects the specified field on the active datasheet or form.

GoToPage Selects the first control on the specified page of the active form.

GoToRecord Makes the specified record the current record in a table, form, or
query. Use to move to the first, last, next, or previous record.

Hourglass Changes the mouse pointer to an hourglass while the macro runs.

Maximize Maximizes the active window.

Minimize Minimizes the active window.

MoveSize Moves and/or changes the size of the active window.

MsgBox Displays a message box containing a warning or informational

3

Action Description

message.

OpenForm Opens a form in Form view, Design view, Print Preview, or Datasheet
view.

OpenModule Opens the specified Visual Basic module in Design view.

OpenQuery Opens a query in Datasheet view, Design view, or Print Preview.

OpenReport Opens a report in Design view or Print Preview or prints the report
immediately.

OpenTable Opens a table in Datasheet view, Design view, or Print Preview.

OutputTo Exports the specified database object to a Microsoft Excel file (.xls),
rich-text file (.rtf), text file (.txt), or HTML file (.htm).

PrintOut Prints the active database object. You can print datasheets, reports,
forms, and modules.

Quit Quits Microsoft Access.

Rename Renames the specified object.

RepaintObject Completes any pending screen updates or pending recalculations of
controls on the specified object or on the active object if none is
specified.

Requery Forces a requery of a specific control on the active database object.

Restore Restores a maximized or minimized window to its previous size.

RunApp Starts another program, such as Microsoft Excel or Word.

RunCode Runs a Visual Basic Function procedure.

RunCommand Runs a command from Microsoft Access's menusfor example, File
Save.

RunMacro Runs a macro.

RunSQL Runs the specified SQL statement for an action query.

Save Saves the specified object or the active object if none is specified.

SelectObject Selects a specified database object. You can then run an action that
applies to that object.

SendKeys Sends keystrokes to Microsoft Access or another active application.

3

Action Description

These keystrokes are processed as if you had typed them yourself on
the keyboard.

SendObject Sends the specified database objects as an attachment in an e-mail.

SetMenuItem Sets the state of menu items (enabled or disabled, checked or
unchecked) on custom menus. Works only on custom menus created
using menu bar macros.

SetValue Sets the value for a control, field, or property on a form or report.

SetWarnings Turns all system messages on or off. This has the same effect as
clicking OK or Yes in each message box.

ShowAllRecords Removes any applied filter from the active table, query, or form.

ShowToolbar Shows or hides a built-in toolbar or a custom toolbar.

StopAllMacros Stops all currently running macros.

StopMacro Stops the currently running macro. Use to stop a macro when a
certain condition is met.

TransferDatabase Imports or exports data to or from the current database from or to
another database.

TransferSpreadsheet Imports data from a spreadsheet file into the current database or
exports data from the current database into a spreadsheet file.

TransferText Imports data from a text file into the current database or exports data
from the current database into a text file.

3

APPENDIX B
DATA MODEL FOR COMBINED INVESTMENT AND RETAIL BANKING

OPERATIONAL DATA

3

LITERATURE

1. Andersen V. How to do everything with Microsoft Office Access 2007. –

NY: McGraw Hill, 2007. – 617 p.

2. Baker K., Powell G. Understanding Financial Management: A Practical

Guide. – NY: Wiley-Blackwell, 2005. – 504 p.

3. Benson S. Information Systems: A Business Approach. – NY: Wiley,

2008.– 400 p.

4. Mishkin F. S. The economics of money, banking, and financial markets. –

NY: Addison-Wesley, 2004. – 850 p.

5. Saunders C.S., Pearlson K.E. Managing and Using Information Systems. –

NY: Wiley, 2009. – 400 p.

6. Carroll M.L. CyberStrategies: How to Build an Internet-Based Information

System. - NY: Wiley, 1995. – 286 p.

7. Matthews K., Thompson J. The economics of banking. – NY: John Wiley

& Sons Ltd, 2005. – 257 p.

8. Thomsen E. OLAP Solutions: Building Multidimensional Information

Systems. - NY: Wiley, 1997. – 608 p.

