УДК 004.89:004.93

Звенигородский А.С., Иванова С.Б., Чернышова В.Н.

Институт информатики и искусственного интеллекта ГВУЗ «Донецкий национальный технический университет», г. Донецк, Украина Украина, 83050, г. Донецк, ул. Б. Хмельницкого, 84, г. Донецк, <u>zas@suiai.edu.ua</u>

Модель одного ответа на вопрос в естественноязыковых системах тестирования

A.S.Zvenigorodsky, S.B. Ivanova, V.N. Chernishova

Institute of Informatics and Artificial Intelligence, Donetsk National Technical University, Donetsk, Ukraine Ukraine, 83050, c. Donetsk, B. Khmelnitskiy st., 84

Some answer model in natural language testing systems

О.С. Звенігородський, С.Б. Іванова, В.М. Чернишова

Інститут інформатики і штучного інтелекту ДВНЗ «Донецький національний технічний університет», м. Донецьк, Україна Україна, 83050, м. Донецьк, пр. Б. Хмельницького, 84

Модель однієї відповіді на питання в природномовних системах тестування

В статье рассматривается проблема моделирования вопросов на перечисление в системах компьютерного тестирования знаний. Предложена модель ответа на перечисление, учитывающая составляющие предметной области ответа и естественно-языковые средства их выражения. Представлен алгоритм анализа и оценки ответа на перечисление.

Ключевые слова: система тестирования, критерий оценки, модель ответа, естественный язык.

In this paper the problem of modeling enumeration-question in computer testing systems is considered. It is proposed an answer model, which takes into account entity domain elements of answer and natural language tools of their expression. An analysis and estimation algorithm of an enumeration-answer is proposed.

Key words: testing system, estimation criterion, answer model, natural language.

У статті розглядається проблема моделювання відповідей на питання на перерахування в системах комп'ютерного тестування знань. Запропоновано модель відповіді на перерахування, що враховує складові предметної області відповіді і природно-мовні засоби їх вираження. Представлено алгоритм аналізу та оцінки відповіді на перерахування.

Ключові слова: система тестування знань, критерій оцінки, модель відповіді, природна мова.

Введение

Одно из развивающихся направлений в информационных технологиях – применение компьютерных технологий в образовании: обучающие системы, системы контроля знаний. Важной проблемой в этих системах является минимизации влияния

учителя на объективность оценки знаний тестируемых. Использование вопросов, в виде тестов [1] позволяет избежать присутствия учителя при анализе результатов, однако не позволяет всесторонне оценить уровень знаний обучаемого. Это связано с ограничениями по типам вопросов систем тестирования. В настоящее время преобладающим типом вопроса является выбор правильного ответа из набора предложенных. При таком тестировании возникает проблема случайного угадывания и логического исключения заведомо неправильных вопросов [3]. Применение вопросов, требующих развернутого ответа, приводит к необходимости использования в тестировании естественно-языковых конструкций и решения проблемы их анализа и понимания, что является сложной задачей. В результате электронные тестовые системы по разнообразию вопросов уступают контролю знаний с учителем, поэтому задача построения естественно-языковых систем тестирования даже самого низкого уровня является актуальной.

Целью данной статьи является уменьшение неоднозначности смысловой интерпретации естественно-языковых ответов на вопросы одного из классов вопросов и повышение объективности оценки ответа.

Анализ проблемы

В работе [2] описан подход, основанный на семантическом анализе ответа обучаемого, который основывается на индивидуальных концептуальных грамматиках, представляющих собой формальные семантические конструкции ожидаемого ответа. Описана семантическая типизация вопросов на основании, которой выполняется разбиение множества ответов обучаемого на семантические классы, в каждом из которых требуется раскрытие некоторого однотипного смысла, определенного типом вопроса. За счет такой типизации вопросов и узкой предметной области, определенной заранее при конструировании вопросов, можно представить для каждого типа вопроса ограниченный набор допустимых, т.е. логически правильных, смысловых конструкций (ответных формул), ряд возможных ответов по каждому вопросу, построить соответствующие семантические модели и описать конструкции правильных ответов для всех вопросов. Предложенная в работе семантическая классификация вопросноответных текстов основана на классификации вопросов по сложности раскрываемых отношений (содержание в тексте ответа типовых или составных отношений одного или нескольких факторов). Однако этот подход не устраняет неоднозначность смысла ответа, так как семантические модели являются языковыми, и отображают связь между единицами языка, что не является полностью адекватным для смысла предметной области ответа.

Постановка задачи

Существует несколько классов вопросов с ответами на естественном языке, отличающиеся по сложности построения ответа. На наш взгляд создание общей модели ЕЯ-ответов на все классы вопросов является проблематичным. Поэтому мы выбрали один из классов вопросов – вопросы на перечисление, чтобы в простой модели решить некоторые языковые проблемы, например, синонимии и омонимии и затем распространить новые походы на более сложные вопросы.

Рассмотрим сущность вопросов и ответов на перечисление. С позиций процесса приобретения знаний ответ на перечисление показывает, какие элементы знаний (данных) обучаемый запомнил, классифицировал в своей памяти и, в подтверждение запоминания, может воспроизвести с помощью естественного языка. Таким образом, можно считать, что данные ответа структурированы и представляют модель некоторой предметной области (ПрО). Анализ вопросов на перечисление показал, что данными, которые можно перечислять являются элементы следующих множеств: множества сущностей, множества свойств или функций одной сущности, множества Для конструктивной отношений между сущностями. постановки задачи воспользуемся понятием модель предметной области вопрос-ответа (ПОВО), представленной в [3] и адаптируем ее под ответ на перечисление.

Приведем примеры вопросов на перечисление: «Назовите функции плазматической мембраны» (биология), «Какие типы переменных вы знаете?» (информатика), «Назовите группы органических соединений в живой природе» (химия), «Приведите примеры органогенных элементов». Ответ на последний вопрос можно представить в виде простого ответа, например, «азот, углерод, кислород» или полного ответа «Органогенными элементами являются: азот, углерод и кислород».

Из этих ответов следует, что речь идет о сущностях (химических элементах) некоторой ПрО, которые в русском языке обозначаются словами: «азот», «углерод», «кислород». Кроме этого, в ответе могу быть слова «Органогенными элементами являются», которые не несут информации о сущностях ПрО, а усиливают выразительность ответа. Введем несколько понятий.

Формально полный ответ на перечисление — это множество элементов предметной области ответа на перечисление.

Критерий оценки формального ответа — это расстояние или степень совпадения модели, построенной по ответу пользователя с моделью формально полного ответа.

Естественно-языковые форма (ЕЯ-форма) — это лексема или последовательность лексем (синонимы, метафоры и другие языковые конструкции в лингвистическом понимании), которые служат для указания на элементы множеств ПрО ответа.

Дополнительные лексемы – это ЕЯ-формы, употребляемые для связки слов в предложении (союзы) или усиливающие выразительность ответа и употребляемые только в этой ΠpO .

Окончательный ответ – это ЕЯ-выражение, в котором присутствуют грамматически правильные и неправильные ЕЯ-формы, указывающие на элементы множеств ПрО и ЕЯ-формы дополнительных лексем.

Понятие окончательного ответа вводится для устранения ситуаций, присущих некоторым системам, в которых допускается только грамматически правильные ответы. Это приводит к тому, что правильный, по сути, ответ, считается ошибочным, если содержит, хотя бы одну грамматическую ошибку. Для реализации более гибкой системы оценивания будем читать, что оценка окончательного ответа зависит от степени соответствия формально полному ответу, грамматической правильности и выразительности ответа (использования дополнительных лексем). Например, если кратко перечислены все составляющие формального ответа, но с грамматическими

ошибками, то такой ответ оценивается как 75% окончательного ответа, если без грамматических ошибок, то -85%, если в ответе присутствуют лексемы, усиливающие выразительность ответа, то -100%.

Таким образом, задача анализа ЕЯ-ответа заключается в следующем: выделить в ответе ЕЯ-формы, которые указывают на конкретные элементы множества предметной области ответа, сравнить с моделью формально полного ответа, проверить грамматику и употребление ЕЯ-средств выразительности и по заданному критерию оценить ответ.

Модель ответа на вопрос на перечисление

В соответствии с постановкой задачи определим модель формально полного ответа на вопрос на перечисление в виде пятерки:

$$O = (S, LS, R_n, D, RLD)$$

где:

S – множество элементов предметной области ответа;

LS – множество лексем и сочетаний лексем в основной морфологической форме;

$$LS = (LS_n)$$

 LS_n – подмножества лексем и сочетаний лексем (синонимы и метафоры) в основной морфологической форме, обозначающих элементы множества предметной области S; $n=1,\ldots N$ – количество элементов предметной области;

 R_n — подмножества морфологических правил для ЕЯ-форм подмножеств LS_n ; n = 1, ... N — количество элементов предметной области;

D – множество дополнительных лексем в основной морфологической форме;

RLD — множество морфологических и синтаксических правил, определяющих грамматические правила сочетания лексем из LS и D;

Критерий оценки ответа и алгоритм анализа

В основу критерия положена идея о том, что ответ может быть по сути правильным, но содержать грамматические ошибки, которые могут иметь разную причину (невнимательность, описки и т.д.). Будем считать, что соблюдение морфологических и синтаксических правил только показывает, что текст может иметь смысл, и не является определяющим при оценивании ответа.

В соответствии с постановкой задачи критерий оценки окончательного ответа Е определяется следующим образом:

$$E = C + G + V$$

где:

C — коэффициент, показывающий степень близости ответа пользователя к формально полному ответу (оценивается от 35 до 75% окончательного ответа);

- G коэффициент, учитывающий правильность морфологии и синтаксиса ответа пользователя (оценивается от 0 до 15% окончательного ответа);
- V коэффициент, учитывающий употребление дополнительных лексем в ответе пользователя(оценивается от 0 до 10% окончательного ответа);

В соответствии с предложенной моделью и критерия оценки окончательного ответа разработан алгоритм, представленный на рис.1.

Входными данными для оценивания окончательного ответа являются элементы множеств предметной области ответа, определенные по лексемам ответа, и результаты морфологического и синтаксического анализа входного предложения. Таким образом, при определении оценки окончательного ответа учитываются выходные данные со всех предшествующих блоков анализа.

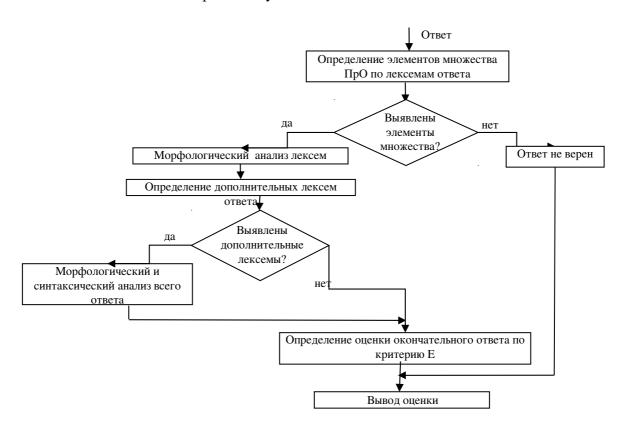


Рисунок 1 – Алгоритм анализа ответа на перечисление

Выводы

- 1. Ответ на вопрос в данной модели может иметь только один смысл или не иметь ни одного, поэтому проблема омонимии снимается.
- 2. Данная модель допускает произвольный порядок слов в ответе, грамматические ошибки, короткие лаконичные ответы и развернутые ответы, использование синонимов и метафор.

- 3. Модель формально полного ответа может создаваться на основе экспертных оценок, что уменьшает субъективность по сравнению с одним автором (учителем).
 - 4. Возможны различные критерии оценки окончательного ответа.
- 5. Для более сложных классов вопросов необходимы более сложные модели формально полных ответов, в которые модель ответа на перечисление может входить как составляющая.

Литература

- 1. Орел Е. Создание тестов и компьютерное тестирование. / Орел Е., Прохоров А. // Компьютер Пресс №7 2006 г.
- 2. Сулейманов Дж.Ш. Семантический анализ естественно-языковых текстов в вопросноответном режиме / Сулейманов Дж.Ш., Аюпов Мад.М. // Изд-во «Фэн» Академии наук РТ – Казань- 2011, с. 344-348
- 3. Звенигородский А.С. Естественно-языковые интерфейсы в системах тестирования знаний / Звенигородский А.С., Чернышова В.Н. // Математичне і програмне забезпечення інтелектуальних систем : тези доповідей ІХ Міжнародної наук.-практ. конф, м. Дніпропетровськ,. М-во освіти і науки, молоді та спорту України.

Literature

- 1. E.Sozdanie's Eagle of tests and computer testing. / Orel E, Prokhorov A//the Computer the Press №7 2006
- 2. Sulejmanov of J. S.Semanticheskij analiz of natural language texts in a question-answer mode / Sulejmanov J. Sh, Ajupov Mad. M//Publishing house "Fan" of Academy of Sciences RT Kazan 2011, with. 344-348
- 3. Zvenigorodsky A.S.natural language interface in testing systems of knowledge / Zvenigorodskij A.S., Tchernyshov V. N//Mathematical and the software of intellectual systems: theses of reports of IX International scientifically-practical conference, Dnepropetrovsk. The Ministry of Education and Science, youth and sports of Ukraine.

Цитирование:

Звенигородский А.С. / Модель одного ответа на вопрос в естественноязыковых системах тестирования. / Звенигородский А.С., Иванова С.Б., Чернышова В.Н.// Искусственный интеллект. – 2012. – №2