ВЛИЯНИЕ ОДНОСТОРОННИХ СВЯЗЕЙ НА ЗАКОН ДВИЖЕНИЯ МАШИНЫ

Мешков В.А., Киреев Д.Г. (ДонНТУ, г. Донецк, Украина)

При определении кинематических характеристик звеньев механизма используется обычно метод, предполагающий упрощение механизма за счет приведения сил и масс с последующим составлением и исследованием динамической модели механизма. Приведенные момент сил и момент инерции определяются следующими уравнениями

$$\begin{split} M_{mp} \, \omega_{mp} &= \sum \overline{F}_i \cdot \overline{V}_i + \sum M_j \, \omega_j \\ I_{mp} \, \omega_{mp}^2 &= \sum m_i \, V_{S_i}^2 + \sum M_{S_j} \, \omega_j^2 \end{split}$$

Однако получаемый таким образом результат не всегда соответствует реальным характеристикам движения звеньев.

Как известно, одной из основных задач динамического исследования машин является определение фактического закона её движения. Но в механизме со степенью подвижности W=1 движение всех звеньев определяется законом движения ведущего звена. После такой замены характер движения ведущего звена должен остаться таким же, как до замены.

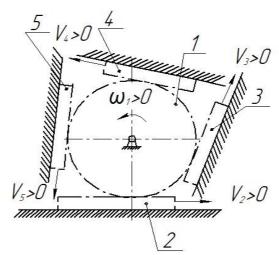


Рисунок 1 – Правило знаков

Для удобства при расчетах будет использоваться следующее правило знаков:

Угловые характеристики (угол поворота φ , угловая скорость ω , угловое ускорение ε и момент сил M), направленные против хода часовой стрелки будут измеряться положительными числами.

Линейные характеристики (линейное перемещение S, линейная скорость V, линейное ускорение α , сила F), соответствующие положительным угловым будем считать положительными.

Для механизма, кинематическая схема которого приведена на рисунке 2 определить угловое ускорение звена 1.

Исходные данные для расчета:

Количество зубьев зубчатых колес 1 и 2 составляет соответственно $z_1 = 20, z_2 = 80$

Радиус барабана (звено 3) $R_3 = 0.2 \, \mathrm{M}$.

Момент инерции звеньев 1 и 2 соответственно $I_1 = 0.8 \mathrm{кгm}^2 I_2 = 1.2 \mathrm{кгm}^2$. Звено 2 включает в свой состав зубчатое колесо 2 и барабан 3.

Масса бадьи (звено 4) $m_4 = 100$ кг

Момент сил, приложенный к звену 1, $M_1 = 500$ Hм

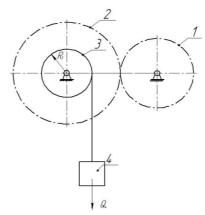


Рисунок 2 – Схема зубчатого механизма

1.Решение

$$\begin{split} M_{\pi p} &= \frac{\omega_{l}^{2}}{2} \frac{d \, I_{\pi p}}{d \phi} + I_{\pi p 1} \epsilon_{1} = I_{\pi p 1} \epsilon_{1} \\ I_{\pi p 1} \omega_{l}^{2} &= I_{1} \omega_{l}^{2} + I_{2} \omega_{2}^{2} + m_{4} V_{4}^{2} \\ I_{\pi p 1} &= I_{1} + I_{2} U_{2.1}^{2} + m_{4} U_{2.1}^{2} R_{3}^{2} \\ U_{2.1} &= \left(-\frac{z_{1}}{z_{2}} \right) = \left(-\frac{20}{80} \right) = -0.25 \\ I_{\pi p 1} &= 0.8 + 1.2 \left(-0.25 \right)^{2} + 100 \left(-0.25 \right)^{2} 0.2^{2} = 1.125 \, \text{kg/m}^{2} \\ M_{\pi p 1} &= I_{\pi p 1} \epsilon_{1} \\ \epsilon_{1} &= \frac{M_{\pi p 1}}{I_{\pi p 1}} \\ M_{\pi p 1} \omega_{l} &= M_{1} \omega_{l} + G_{4} V_{4} \\ G_{4} &= mg = 100 \cdot \left(-9.81 \right) = -981 H \\ M_{\pi p 1} &= M_{1} + G_{4} U_{1.2} R_{3} = 500 + \left(-981 \right) \cdot \left(-0.25 \right) \cdot 0.2 = 549.05 \, H_{M} \\ \epsilon_{1} &= \frac{549.05}{1,125} = 488.04 \frac{pa\pi}{c^{2}} \end{split}$$

2. Анализ полученных результатов.

Определим линейное ускорение звена 4:

$$U_{2.1} = \frac{\varepsilon_2}{\varepsilon_1} \quad \varepsilon_2 = U_{2,1} \varepsilon_1 = -0.25 \cdot 488.04 = -122.01 \frac{\text{рад}}{\text{c}^2}$$
$$a_4 = \varepsilon_2 R_3 = -122.01 \cdot 0.2 = -24.4 \frac{\text{M}}{\text{c}^2}$$

Знак минус показывает, что ускорение звена 4 направлено вниз.

Полученный результат формально верный. Но с точки зрения механики невозможный, так как звено 4 закреплено на канате, который не предназначен для работы на сжатие и поэтому не может воздействовать на звено 4 с силой, направленной вниз. А для получения вычисленного ускорения звена 4 должна действовать еще, как минимум, одна сила помимо силы тяготения.

Получаем, что при таких начальных параметрах звено 4 отделяется от механизма в кинематическом и динамическом смыслах (за счет образования петли на канате).

3.Перерасчет с учетом полученных сведений.

$$\begin{split} \frac{I_{\pi p1}\omega_{l}^{2}}{2} &= \frac{I_{1}\omega_{l}^{2}}{2} + \frac{I_{2}\omega_{2}^{2}}{2} \\ I_{\pi p1} &= I_{1} + I_{2}U_{2.1}^{2} \\ U_{2.1} &= \left(-\frac{z_{1}}{z_{2}}\right) = \left(-\frac{20}{80}\right) = -0.25 \\ I_{\pi p1} &= 0.8 + 1.2\left(-0.25\right)^{2} = 0.875_{\text{K}\Gamma\text{M}}^{2} \\ M_{\pi p1} &= I_{\pi p1}\epsilon_{1} \\ \epsilon_{1} &= \frac{M_{\pi p1}}{I_{\pi p1}} \\ M_{\pi p1}\omega_{l} &= M_{1}\omega_{l} \\ M_{\pi p1} &= M_{1} = 500 \, \text{H}_{\text{M}} \\ \epsilon_{1} &= \frac{500}{0.875} = 571.43 \, \frac{\text{pag}}{c^{2}} \end{split}$$

Очевидно, что правильным является решение

$$\mathbf{\epsilon}_1 = \frac{500}{0.875} = 571.43 \frac{\text{рад}}{\text{c}^2}$$

Вывод: Таким образом, в случае такого нагружения механизма, при котором в результате наличия односторонних связей в нём не может быть передана нагрузка некоторым его звеньям, массы и моменты инерции этих звеньев, а также действующие на них нагрузки не следует учитывать при определении приведенных характеристик. Должны быть учтены массы, моменты инерции и нагрузки, действующие на те звенья, которые остаются кинематически однозначно связаны со звеньями приведения.

Список литературы: 1. И.И. Артоболевский "Теория механизмов и машин" 4е издание перераб. и доп. –Москва, Наука 1988г – 640стр.