ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ИЗНОСА ЗУБЬЕВ КОНИЧЕСКИХ ПЕРЕДАЧ С КРУГОВЫМИ ДВОЯКОВЫПУКЛО-ВОГНУТЫМИ ЗУБЬЯМИ

Онищенко В.П., Кузнецова А.В., Гаврильченко В.Ю.

ДонНТУ, г.Донецк, Украина Тел.: +38 (062) 3010835; E-mail: opm@mech.dgtu.donetsk.ua

Abstract: The paper given below represents the estimation technology of the space bodies' size changing by the example of measuring the teeth wear of bevel gears with circular biconvex-concave teeth by laser scanning. The space pictures of teeth wear after a certain period of operation are set. The error of method is not more than 0,04 mm.

Key words: biconvex-concave teeth, bevel gear, engagement, laser scanning, wear.

В большинстве тяжелонагруженных машин в качестве приводов используются зубчатые передачи и, в частности, конические зубчатые передачи с круговыми двояковыпукло-вогнутыми зубьями (ДВВ-зубьями) [1], оценка долговечности которых по исходным параметрам профилей зубьев является приблизительной, поскольку не учитывается тот факт, что из-за износа зубьев форма профиля становится отличной от исходной. В результате меняются параметры контакта, что, в свою очередь, изменяет форму профилей зубьев. Однако если расчету зубьев цилиндрических эвольвентных передач на износ уделяется большое внимание [2], то расчет на износ конических передач с ДВВ-зубьями вообще не производится.

Проблемой износа зубьев зубчатых передач занимались многие исследователи. Молдавским Л.А. установлена тесная взаимосвязь между различными видами повреждений зубьев [3]. При анализе этого статистического материала сделано предположение, что развитие повреждений зубьев происходит последовательно. Так, искажение профиля зуба в результате износа приводит к уменьшению радиусов кривизны и, как следствие, к ускоренному развитию выкрашивания и

появлению заедания рабочих поверхностей. Эта гипотеза была подтверждена экспериментально. Дж.Р. Мыга экспериментально показал, что искажение профилей закаленных зубьев в результате износа существенно влияет на динамические нагрузки в зацеплении [4]. А. Вилк, Дж. Ш. Куанг и А.Д. Лин ввели в динамическую модель профили изношенных колес, используя упрощенную модель профилей изношенных зубьев и считая передаточное отношение постоянным [5]. Ю.Войнаровски Онишенко В.П. провели аналитические И экспериментальные исследования влияния деформации и износа зубьев на динамику зубчатых колес [6].

Анализ известных методов измерения износа [7] показал, что информацию о форме профиля изношенного зуба в эксплуатационных условиях наиболее целесообразно получать с помощью метода отпечатков.

В данной работе исследование износа зубьев проводились на базе анализа зацепления зубчатой передачи комбайна РКУ10 производства ЗАО «Горловский машиностроитель» (г. Горловка, Донецкая обл., Украина). Параметры исследуемой передачи представлены в таблице 1.

Таблица 1- Основные параметры исследуемой зубчатой передачи

Параметр	шестерня	колесо
Средний нормальный модуль	13 мм	
Внешний окружной модуль	15,4647 мм	
Числа зубьев	13	24
Коэффициенты смещения исходного контура	0,55	0,95
Межосевой угол	90°	
Средняя арифметическая шероховатость	6,3 мкм	
Ширина зубчатого венца	70 мм	
Угловая скорость ведущего вала	27,69 рад/сек	
Вращающий момент на ведущем валу	10420 Н∙м	
Удельная нагрузка по длине зуба	1866,9 Н/мм	
	сталь 20Х2Н4А	
Материал и термическая обработка	цементация, закалка	
	57÷63HRC _Э	

Для получения слепков на поверхность впадины зуба заливался мелкодисперсный гипсовый раствор. После затвердевания раствора производился съем слепка. В обязательном порядке слепок маркировался специальным шифром с целью его последующей идентификации. Для надежности измерений изготавливались слепки двух-трех впадин между зубьями. В отличие от цилиндрических колес, конические колеса с круговыми ДВВ-зубьями имеют сложную пространственную форму, поэтому возникает множество сложностей при выполнении дальнейшей обработки общеизвестными методами [7,8].

В настоящее время есть ряд методов измерения размеров поверхностей трехмерных объектов, но они часто требуют сложного и дорогостоящего оборудования. Однако есть и недорогие системы для трехмерного сбора данных. Так, в данной работе был применен метод лазерного сканирования, предложенный учеными института робототехники и управления технологическими процессами, технического Брауншвейга Симоном Вилькенбахом, университета Свеном Молкенстраком, Фридрихом М. Войле [9], который заключается в анализе трехмерного объекта и сборе данных о его форме. Лазер излучает остронаправленный луч по направлению к объекту. Только малая часть из составляющих этот луч фотонов возвращается обратно и регистрируется оптическими датчиками приемного устройства. Какая именно часть – зависит от отражающей способности объекта, которая в свою очередь определяется цветом и фактурой. Необходимым условием данного метода является пересечение лучом лазера двух объектов одновременно объекта, геометрические параметры исследуемого которого нам неизвестны, и опорного объекта с известной нам геометрией, находящегося на заднем плане. В данном случае таким объектом являются две маркированные поверхности, закрепленные жестко между собой под углом

 90° . Маркеры необходимы для калибровки камеры, т.е. для нахождения координат опорного объекта относительно координатной системы камеры. В данной работе калибрование камеры производится по методу Цая [10]. Пересечение лазера с опорным объектом используется для калибрования лазера — вычисление точной пространственной позиции лазерной плоскости P_L (рис.1).

Главная лазерного сканирования определение цель пространственных координат точек, расположенных на поверхности объекта. Так как геометрия опорного объекта нам известна, нахождение координат точек видимой лазерной линии происходит вследствие пересечения опорного объекта и лучей, поглощаемых светочувствительной матрицей камеры. При условии, что точки пересечения в пространстве линейно независимы, они ограничивают положения лазерной плоскости P_{L} . При каждом измерении луч лазера отклоняется от своего предыдущего положения так, чтобы пройти через узел некоей мнимой нормальной сетки, называемой сканирующей матрицей. Нахождение лазерной производится с точностью до фрагментов пикселя, вычислив среднее Y(x)координат пикселя в каждом столбце X сканирующей матрицы. После получения функции Y(x) лазерной линии вычисляется пространственное положение лазерной плоскости. Для повторного выбора трех случайных пикселей $Y(x_1), Y(x_2),$ $Y(x_3)$, принадлежащих опорному объекту, используется метод RANSAC [10]. Далее получают уравнения трех световых лучей r_i для каждого из этих пикселей. Результатом пересечения этих световых лучей и известной геометрии опорного объекта являются три точки поверхности p_1, p_2, p_3 . Они являются линейно зависимыми и определяют возможное положение лазерной плоскости P_L . Зная уравнение лазерной плоскости P_L и количество пикселей изображения из функции Y(x), которые находятся в одной плоскости и одновременно

сканируемом объекте (рис.1), можно получить уравнение светового луча r для каждого из этих пикселей.

Новые точки поверхности объекта могут быть легко вычислены используя пересечение $p=r\cap P_L$. В процессе сканирования плоскость действия лазера обычно перемещается по объекту несколько раз. Таким образом, лазерная линия может коснуться пропущенных значений и повысить точность, там, где необходимо. Тем не менее, часто случается, что алгоритм получает несколько точек поверхности для одного и того же пикселя изображения. Это должно быть устранено, используя усредненную (быструю и легкую) или медианную фильтрацию, потребляющую память и замедляющую обработку, но исключающую возможные промахи (резко отличающиеся значения экспериментальных величин).

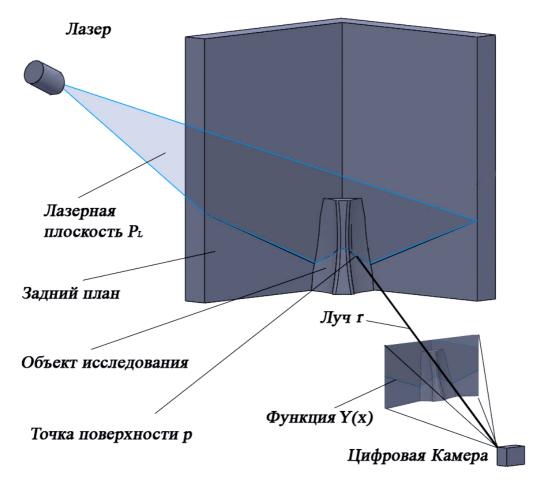


Рисунок 1 – Триангуляция лазера.

Измерения производятся с очень высокой скоростью — тысячи, а порой и сотни тысяч измерений в секунду. Результатом работы лазерного сканера является облако точек отражения лазерного луча, которое как бы покрывает поверхность объекта. Для каждой такой точки регистрируются три координаты (x, y, z) и интенсивность принятого сигнала. Обычно в таком облаке точек насчитывается от нескольких сотен тысяч до нескольких миллионов точек. Затем по этим точкам восстанавливается форма сканируемого объекта — этот процесс называется реконструкцией.

Точность метода зависит от используемого оборудования и его настройки - расстояния до камеры, размера исследуемого объекта, условий света, угла триангуляции, качества калибровочного угла, яркости лазера и т.д. В случае измерения износа данной пары зубчатых передач погрешность метода составляет 0.02 мм.

Далее для вычисления износа трехмерная модель слепка накладывалась на теоретический профиль впадины между зубьями. Сравнение изношенного и теоретического профилей зубьев позволяет оценить износ по высоте и длине зуба.

По полученным значениям создаются пространственные модели шестерни и колеса. Для обработки полученных изображений используются системы автоматизированного трехмерного проектирования. Трехмерное изображение изношенного отпечатка устанавливается во впадину между зубьями теоретической модели колеса. В связи с тем, что зачастую отсутствует возможность получения нулевого (до начала эксплуатации) отпечатка, базирование изображения изношенного профиля осуществляется на основе выполнения двух условий: симметричность и подобие переходных кривых и неизношенных участков зуба относительно плоскости симметрии впадины (C_1 — для шестерни, C_2 — для колеса) и

эквидистантность дуг окружностей впадин изношенного и теоретического профилей. На рис.2 приведен пример базирования слепка во впадине зуба.

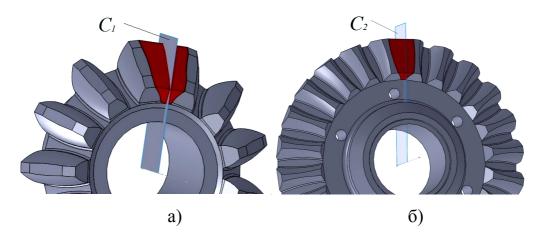


Рисунок 2 – Базирование слепка во впадине зуба:

а) – шестерня; б) – колесо.

После базирования модели производится измерение износа I_i в сечениях по длине зуба. На рис.3 представлено измерение износа в среднем сечении зуба конической двояковыпуклой шестерни.

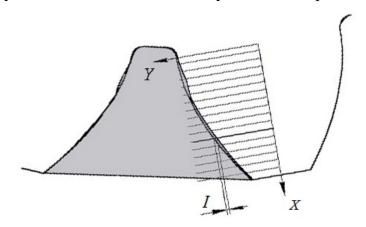


Рисунок 3 – Определение износа зуба.

Затем производится вычисление координат профиля изношенного зуба в ортогональной системе координат:

$$y_i = \frac{R_{bi}}{\cos \alpha_i} \sin(\gamma_i - tg\alpha_i + \alpha_i) + R - \sqrt{R^2 - B_i^2} - I_i$$
 (1)

Трехмерные графики распределения износа по длине и высоте зуба двояковыпуклой шестерни и двояковогнутого колеса представлены на рис.4.

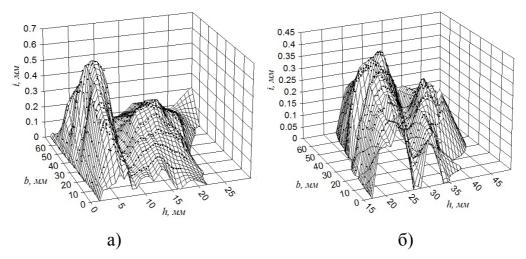


Рисунок 4 - Распределение износа i по длине зуба b и высоте зуба h: а) — шестерня; б) — колесо.

Графики распределения износа в среднем сечении зубьев шестерни и колеса представлены на рис.5.

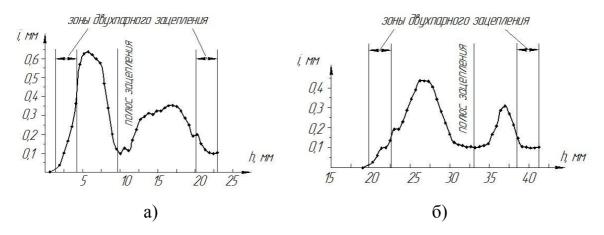


Рисунок 5 - Распределение износа i по высоте зуба h в среднем сечении: а) — шестерня; б) — колесо.

Для среднего сечения зубьев конических колес с круговыми ДВВзубьями максимальный износ на зубе шестерни составляет 0,64 *мм*, на зубе колеса — 0,44 *мм*. На крайней границе контакта ножки зуба износ отсутствует, затем кривая износа начинает расти. Достигая своего максимального значения, износ зуба начинает уменьшаться и его минимальное значение по высоте зуба приходится на полюс зацепления. Этот минимум составляет около 0.1 *мм*. Далее наблюдается рост кривой износа. Второй экстремум кривой находится в зоне середины головки зуба, после которого происходит спад значений износа. По длине зуба износ имеет свое максимальное значение в среднем сечении зуба. Значение износа уменьшается от среднего сечения к торцам зуба.

Допуск на погрешность профиля зуба δ_l составляет 0,032 мм. Погрешность метода лазерного сканирования δ_2 составляет 0,02 мм. Эти погрешности находятся в одной плоскости и могут проявляться либо в одном, либо в противоположных направлениях. Максимальная погрешность δ данного метода измерения будет иметь место при действии этих погрешностей в одном направлении и составляет 0,038 мм.

Применение разработанной методики является эффективным зубьев, инструментом ДЛЯ исследования зацепления изношенных результаты которого позволят разработать методику прогнозирования долговечности конических зубчатых передач с круговыми ДВВ-зубьями. В результате исследований, проведенных на основании предложенной технологии измерения износа зубьев конических передач с круговыми ДВВ-зубьями, можно сделать следующие выводы:

- износ зуба неравномерен по его высоте;
- значения износа более чем на порядок превышают допуски на погрешность профиля зуба;
- в зоне теоретического полюса зацепления, несмотря на равенство нулю скорости скольжения, тем не менее, имеет место износ зуба;
- в соответствующих точках отношение износа зуба шестерни к износу колеса не равно передаточному числу зубчатой передачи.

Список литературы: 1. СТП 12.44.28.028 – 76. Передачи зубчатые конические с круговыми двояковыпукло-вогнутыми зубьями. – М.: 1976. – 28 с. (стандарт предприятия). 2. Онищенко Валентин. Прогнозирование тяжелонагруженных зубчатых передач долговечности моделирования износа зубьев / Gliwice: Mechanika, 1999 – z.131. **3**. Молдавский Л.А. Виды повреждений и долговечность трансмиссий горных машин / Молдавский Л.А, Финкельштейн З.Л., Верклов Б.А. – М.:, Недра, 1981. – 190 с. 4. Myga J.R. Wpływ zużycia zeba na wielkość sił dynamicznych // Praca doktorska / Politechnika Śląska/ – Gliwice, 1976. 5. Wilk A. Wpływ parametrów technologicznych i konstrukcyjnych na dynamikę przekładni o zębach prostyc// Zeszyty naukowe Politechniki Śląskiej. -Mechanika, Nr. 679. - Gliwice, 1981. - 108 s. 6. Войнаровські Юзеф. Вплив зношування зубців на динамічні характеристики зубчастої передачі / Юзеф Войнаровські, В.П. Оніщенко // Всеукраїнський науково технічний журнал. Вибрации в технике и технологиях / Вінницький державний аграрний університет. – Вінниця, 2000. – №1. – С. 34–42. 7. Хрущев М.М. Лабораторные методы испытания на изнашивание материалов зубчатых колес. М.: «Машиностроение», 1966. – 152 с. 8. Онищенко В.П., Голдобин В.А. Применение компьютерных технологий для определения износа зубьев зубчатых колес // Вісник Національного Технічного університету "ХПІ". Збірник наукових праць, тематичний випуск "Проблеми механічного привода", Харків:НТУ "ХПІ". – 2004, №30. – С.176-184. 9. Simon Winkelbach. Low-Cost Laser Range Scanner and Fast Surface Registration Approach / Simon Winkelbach, Sven Molkenstruck, Friedrich M. Wahl // DAGM. - 2006. - LNCS 4174. - P. 718-728. 10. Tsai, R.Y.: An efficient and accurate camera calibration technique for 3d machine vision. In: IEEE Conf. Computer Vision and Pattern Recognition. (1986) 364–374.