ISSN 2074-7888, HaykoBi mpaiii /JoHeIbKOTro HallIOHAJILHOTO TEXHIYHOTO YHIBEpCUTETY,73
cepisi: «IIpobiemu MozentoBaHHs Ta aBToMaTu3auii npoexkryBaHHs» Ne 1 (10)-2(11), 2012
73

YK 004.92

V. Ianushkevych', M. Dosta’ (M.Sc.), S. Antonyuk’ (Dr.-Ing.)

S. Heinrich® (Prof.), V.A. Svyatnyy' (Prof.)

'Donetsk National Technical University, Ukraine
*Hamburg University of Technology, Germany
dosta@tu-harburg.de

ADVANCED DATA STORAGE OF DEM SIMULATIONS
RESULTS

Usage of the discrete element method (DEM) is corresponded with the high
computational demands. One of the main efforts is caused by a huge volume of the generated
data, which should be stored for further analysis and post-processing. In this contribution an
advanced methodology to store such data is proposed and implemented into a novel
simulation system. Performed tests have shown high efficiency of the developed approach.

Keywords: DEM, data storage, granular material, data compression

Introduction

In order to perform simulation of the granular materials on the microscale
the discrete element method has been introduced by Cundall and Strack [1]. The
usage of this approach implies that the investigated system is represented as a
set of individual particles. Each particle is described as a separate entity and in
the every time step the Newtonian equations of motion are solved for each
granule.

Due to the enormous high computational effort of the DEM, the number
of particles of the modelled material is drastically decreased in compare to the
original system. However, to obtain meaningful results and to perform realistic
simulation, the usage of the DEM requires a modelling of large particle sets. The
number of simulated particles can be varied between 103 and 107.

As results from the DEM simulations a set of time-dependent particle
characteristics such as coordinates, velocities, accelerations, etc. are obtained.
These characteristics should be saved onto the hard-drive and loaded from it for
the further data post-processing. The large amount of particles (107), the small
magnitudes of the simulation time step 1 ps and the huge set of time-dependent
characteristics lead to the enormous volume of generated data. The typical
simulation of the fluidized bed apparatus with 150000 particles for 1 second of
real-time results in the data set about 60 GB.

Therefore, to solve an above described problem, the novel data storage
approach has been developed. The new concept has been implemented into the
multiscale simulation system of particulate materials [2] and its performance has
been compared with already developed textual format.

© Ianyshkevich V., Dosta M., Antonyuk, Heinrich S., Svjatnyj V.A., 2012

ISSN 2074-7888, HaykoBi mpaiii JJoHeIIbKOro HallioHAJIbHOTO TEXHIYHOTO YHIBEPCUTETY,
cepisi: «IIpobiemu MozentoBaHHs Ta aBToMaTu3auii npoexkryBanHHs» Ne 1 (10)-2(11), 2012

74

Basic concept

During the DEM modelling a large volume of data is generated. For each
particle in the system the following entries should be stored:

e time-independent: weight, density, modulus of elasticity, etc.

e time-dependent: coordinates, velocities, time progression of particle
temperature, etc.

To store the characteristics which are not depends on the time the
relatively small volume is needed. Contrary to this, the time-dependent data is
continuously generated during simulation and the total amount of this data can
reach enormous size. This can leads to the situations when the simulation results
cannot be stored in the Random Access Memory (RAM) of modern computer
and the data buffering onto a hard drive should be done.

Textual format

To store the DEM data two different file formats have been implemented
into the multiscale simulation environment [2]. First file format has a relatively
simplified structure that allows for a user to modify such files from any text
editors or to generate them from own program. The new particles can be easily
added or the already presented particles can be modified or removed without
data corruption.

In the text format every particle is stored as a single file line. In the first
part of line the time-independent data is placed. Afterwards, in the second part,
the time-dependent data are consistently stored accordingly to the increased
time. In Figure 1 the general organization of the data in the file is illustrated.
The whole file represented as a continuous stream of bytes.

Text file
Particle 1 Particle 2 Particle N
Ol O Ol O
gg eoe Oéé g XX °é e © © o © o o o o % % XX dé
= || = = e =

Figure 1 — Data layout in text file.

Despite the set of previously described benefits, this storage approach has
a set of drawbacks which significantly limits its applicability. The first
disadvantage is a large size of generated files. The textual format implies that
any digit is stored as one-byte character. For example, instead of 2 bytes which
are needed to store the value ‘12345’ the 5 bytes will be used.

Another disadvantage is caused due to the relatively slow data access. To
store the entries for a different time points the various numbers of bytes can be
used. That is why, it is impossible to determine the exact offset of specified time
point in the file. For the visualization or for the post-processing of the modelling
results, it 1s necessary to get particle properties for a specific time point.

ISSN 2074-7888, HaykoBi mpaiii JJoHeIIbKOro HallioHAJIbHOTO TEXHIYHOTO YHIBEPCUTETY,
cepisi: «IIpobiemu MozentoBaHHs Ta aBToMaTu3auii npoexkryBanHHs» Ne 1 (10)-2(11), 2012

75
However, required information is placed all over the file, and since it is
impossible to determine the exact offset of this data, file must be read entirely,
even if the information is needed only for the short time interval.

During the simulation it is necessary to store all data completely in the
RAM. This limits the maximal size of the generated data and makes it equal to
the size of the virtual address space. For instance, in the 32-bit architecture [A32
it is equal to 2 GB. Taking into account all mentioned above disadvantages, the
new file format was developed to provide correct handling of large data sets.

Binary format

The novel storage approach is based on the binary data format, therefore
the size of generated files are significantly smaller compare to the textual. The
binary data is located in the file in different order in compare to the textual
format. The time-dependent and time-independent data are stored in different
files. All data relating to a single time point are stored as a one block. Due to
this feature, to render a single frame it is sufficient to load only one single data
block from the file and there is no need to load all data into the RAM.

In the file with time-independent particle properties supplementary
information about data placement in time-dependent files are stored. This allows
to find the data for specific time point quickly.

In the both file formats the linear interpolation is used. It means, when the
value for specified time point can be predicted from already saved data, then the
new data point will not be saved. Such concept reduces the size of the file, but in
the case with binary files it increase the overhead. With the textual format there
is no such problem, because it is loaded in the RAM entirely. But in the case of
binary format the data for some particle can be absent in the specific time point.
Hence, it is impossible to obtain required information. To avoid this problem the
binary file is spitted into a set of data blocks.

The general storage concept which is used the case of binary format is
shown in Figure 2. At the first time point of any data block all information about
every particle is stored. To get required information for the specific time point, it

is sufficient to load just one data block.
Binary time-independent data

header particle 1 particle 2 cee block 1 block 2 ..

descriptor descriptor

Binary time-dependent data

block 1 block 2
time 1 time 2 cecoe time 1 time 2 cece
— | — | — N — N e o o o
2le Q19 ol o ol o
Q[O|eee| |G |eee O G |[eee| S| G |eee
ﬁ . p— . p— . p— . p— . p— . p— . p—
=g (B2 2[5 |E|Z
el e ol o ol o ol o

Figure 2 — Data layout in the binary files.

ISSN 2074-7888, HaykoBi mpaiii JJoHeIIbKOro HallioHAJIbHOTO TEXHIYHOTO YHIBEPCUTETY,

cepisi: «IIpobiemu MozentoBaHHs Ta aBToMaTu3auii npoexkryBanHHs» Ne 1 (10)-2(11), 2012
76

Implementation of binary format

In the current version of the simulation environment the operations related
to the data storage are encapsulated into the kernel of the system. In order to
create new particles, to delete existing and to perform other modification
operations an interface to the kernel has been implemented. This interface does
not depend on the storage format. If the binary file format is used, then the
swapping of data block is done automatically.

In the RAM memory is always loaded at least 2 data blocks. This is
necessary, to start an algorithm of linear interpolation. Every time, when the
kernel tries to get the access to some time-dependent data, the low-level
Input/Output (I/O) manager is called. This manager checks whether the required
block is present in the RAM. If the required block was not loaded, then the
current blocks are removed from the RAM and new data is loaded.

In the case of the writing operations, the I/O manager analyse the total
volume of the data which has been already saved to the RAM. When the amount
of data in the memory exceeds the maximum allowable size of the block then
the data is saved to the hard-drive as a separate block.

The general representations of the algorithms to save and to load data are
illustrated in Figure 3.

e > e N
‘l get (set)
A

Yes s

_— Isneeded \\\> .
—_— —bl &kin the R Al\//p// Save the data and increase

counter of stored data

!

Unload current data and load o~

No

sesuis bl ///C/(/)/l/;t/lter > Bi\g)\ék\\\\~\\\l\\\10
T size limit///]
\ 4 YeT
Fi inf ;
nd requested n ormation Save data into the hard-
in the RAM .
And return it drive and unload data
T from RAM
l . \ 4
4 N ~
\ end) “\ end /\

Figure 3 — Algorithms for getting and setting data.

ISSN 2074-7888, HaykoBi mpaiii JJoHeIIbKOro HallioHAJIbHOTO TEXHIYHOTO YHIBEPCUTETY,

cepisi: «IIpobiemu MozentoBaHHs Ta aBToMaTu3auii npoexkryBanHHs» Ne 1 (10)-2(11), 2012
77

Performance tests

In order to compare the efficiencies of the text and the binary formats the
performance tests were carried out. The results of these tests are depicted in
Figure 4.

In Figure 4.a (left side) the time which is required to load the data file is
shown. From the received results the conclusion can be drawn, that the binary
files in most cases can be loaded more than 10 times faster as the textual. In
Figure 4.b (right side) the dependency between the random access time and the
file size is shown. With the binary format there is no need to store all the data in
the RAM, hence the memory usage is significantly smaller. Such approach
allows to simulate processes with the large number of particles on a long time
interval.

-¢-Text format -¢-Text format /
: N 320 | g Binarv f
100.0 | ™ Binary format - % Binary orm;t/./
“ = 160
£ 10.0 & / »
= ' <
2 = ¥ / /
g S
"('é 1.0 é 40
— .‘—;‘__—I——f
0.1 -1 T : T . T . T . 20 T
3 26 152 200 360 3 26 152 200 360
File size, MB File size, MB

Figure 4 — Performance tests results. Part 1.

However, in the case of binary format reading and writing data goes much
slower, than in the textual format. In the case of binary data it takes about 100
ms to obtain the data which is placed in another block. This can be observed
from the curves depicted in Figure 5.a.

The ratio between the size of binary and textual format is shown in Figure
5.b. From the illustrated results the conclusion can be drawn that the binary files
significantly smaller than the textual files.

200
1000 »
o 1VU. /M 160
E = /
2 100 -0-T§Xt format | S 120
@ / “#Binary format 2 /
Q o/ (]
S 1.0 = 80 .
g 0.1 g
S 0 s 40 /
g]
< { aa]
Qﬁ 0.0 n ’ ‘ ‘ T ’_ O I T T
3 26 152 200 360 3 26 152 200 360
File size, MB Text file size, MB

Figure 5 — Performance tests results. Part II.

ISSN 2074-7888, HaykoBi mpaiii JJoHeIIbKOro HallioHAJIbHOTO TEXHIYHOTO YHIBEPCUTETY,

cepisi: «IIpobiemu MozentoBaHHs Ta aBToMaTu3auii npoexkryBanHHs» Ne 1 (10)-2(11), 2012
78

Conclusions

The simulation results which are obtained from the discrete element
simulations consist from a huge number of data entries. In order to perform the
post-processing of results the effective data storage concept should be
developed. In this contribution the novel approach to store the DEM data has
been proposed and implemented into the multiscale simulation environment.

The novel concept is based on the usage of the binary data format,
whereby the DEM results are divided between separate data blocks. These
blocks are stored in separate files and continuously loaded into the RAM. Such
approach significantly optimizes memory usage and increases program
efficiency. As another advantage of the novel concept the minimization of the
size of the data files can be underlined.

References

1. Cundall, P. A. & Strack, O. D. L., 1979. A discrete numerical model for granular
assemblies. Geotechnique, pp. 47-65.

2. M. Dosta, S. Antonyuk, S. Heinrich. Multiscale simulation of fluidized bed
granulation process, Chemical Engineering & Technology, 2012, Vol. 35, 1373-1380.

Haoitiwna oo pedaxyii 07.09.2012 p. Peyenzenm:0-p.mex.uayk,npogh. Cesamuuii B.A.

1 2 2 . .
B. filuymikeBuu , M. Jlocta“, C. Autoniok”, I11. Xam{puxz, B.A. CBsiTHBIii'
1 N . N

JloHeuKui HalIMOHAIBHBIA TEXHUYECKUH YHUBEPCUTET, Y KpanHa
2 o N

["amOyprckuit TexHuueckuii yauepcurer, ['epmanus

Yaydmenubiid gopMar Uit XpaHeHHUsI Pe3yJbTATOB MOJAETUPOBAHUSA, MOJYYEeHHBIX NPHU
HCNOJb30BAHNM METOAA JUCKPETHBIX 3JIeMeHTOB. Vcrmonb30BaHue METO/a JUCKPETHBIX
DJIEMEHTOB CBS3aHO C OOJBIIMMU Tp€60BaHI/I$IMI/I, HaKJIaAbIBACMbIMHU Ha BBIYMCIHUTCIBHYIO
cucreMy. OgHO u3 TpeOOBaHMIl BBI3BAHO BBICOKUMH OObEMAMHM T€HEPHUPYEMBIX JaHHBIX,
KOTOPBI€ JIOJDKHBI COXPAHSTHCS JUIsl TOCIEAYIONIero MX aHanmm3a u oOpaboTku. B nmanHoM
CTaTbe€ IPEJCTABIECH HOBBIK (QOopMaT XpaHEHHS JaHHBIX KOTOpBIM ObLI BHEOPEH B
MOJISTUPYIONTYI0 cpeny. [IpoBeneHHbIE UCCIENOBAHMS TMOKA3aId BBICOKYIO 3((EeKTUBHOCTH
MpeAIOKEHHOTO (hopmaTa.

KiioueBbie cjioBa: MeTO[IMCKPETHBIX JJI€eMEHTOB, XpaHeHHe [aHHBIX, ChINlyuHe
MaTepuaJbl, CKATHE JAHHBIX

. 1 2 2 N N
B. SAluymkesiu', M. [locta®, C. AuTonwk”, L1I. Xaiiupix”, B.A. CesiTHuii’
1 o . .o . o . .

JloHeubKUii HAIlIOHABHIA TEXHIYHUN YHIBEPCHUTET, Y KpaiHa
2 o SV .

I"amOyprebkuit TexHIYHUM yHIBepcuTeT, Himeuunna

Iloxpamenuii ¢opmar 30epiranHs AaHUX, $IKi OTpMMAaHi NpPM MOJAEJIOBAaHHI 3a
JAOMOMOTOK) MeToJa [MCKPeTHUX eJeMeHTiB. BukopucranHs MeToly IUCKPETHHUX
€JIEMEHTIB II0B’sI3aH0 31 3HAYHUMH BUMOT'aMH 40 O0YMCIIIOBAILHOT cucTemMu. OnHa 13 3HAYHUX
BHMOT TIOB’s13aHa 3 BEJIMKUM OOCATOM JaHUX, sIKI MOBHUHHI 30€piraTUCh IS iX MOAAIBIIOTO
aHay3y Ta 00poOku. Y mpencraBieHii po6oTi OyB po3pobiieHuit HoBui (hopmart 30epiraHHs
MaHuX, SKUM OyB peanizoBaHUW Yy MoOJenioroue cepemoBuiie. lIpoBeneHi AOCTIMKEHHS
MOCBITYIIIM BUCOKY €PEKTUBHICTh 3aIPOMIOHOBAHOTO opmMary.

Kuio4oBi cji0Ba: MeToa IMCKPETHUX eJ1eMEHTIB, 30epiranHsi JaHUX, CUNIKM MaTepiaiu,
KOMIIPUMYBAHHS JaHHUX

