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HYDRAULIC DESIGN SPECIFYING OF AERODISPERSE FLOWS OF 
POWDERED MATERIALS  

Hydrodynamic characteristic features of powdered materials aerodisperse flows and questions 
of their design methods specification compared with the granular materials flows are considered.  

PROBLEM STATEMENT IN GENERAL 

In response to increasing pneumatic conveying use in different fields of industry, there is the 
necessity of additional aerodisperse flow researches. Problems, occurring while pneumatic 
conveying systems design and use are solved mostly by means of carrying out of labour intensive 
and expensive experiments. The obtained afterwards empiric dependences are applicable as a rule 
only for the limited range of those systems that meet the experiment requirements. The 
generalization of results of experimental researches carried out under different conditions, causes 
significant design errors. For this reason designs are carried out with unreasonably wide range of 
limits causing the increase of power consumption by assemblies and conveying pipeline fallings. 

The hydraulic design primary task is the correct estimation of pressure losses along the line 
providing the least power consumption while the stable conveying process with the specified 
performance.  

ANALYSIS OF THE LATEST ACHIEVEMENTS AND PUBLICATIONS 

The known hydraulic resistance design methods used in hydromechanics for single-phase 
mediums are based on the use of Bernoulli's equation, expressing the flow energy balance. For two-
phase aerodisperse flows conditions it was modified in 2004. [1]. The generalized method of 
hydraulic resistances design in a gas suspension [2] flow, ensuring high accuracy of designs for 
granular materials was developed on the basis of Bernoulli's equation. However it turned out that 
the design results for powdered material gas suspension with the particles size of no less than 
100µm deviate considerably from the experimental data. Carrying out of additional theoretical and 
experimental researches was required for establishing the reasons of the fact.  

AIM OF WORK 

The aim of the work is specifying of hydraulic design methods of powdered material flows 
pneumatic conveying.  

BASIC RESEARCH MATERIAL PRESENTATION 

The category of powdered solids includes milled solid materials with the mean size of 
particles not exceeding 100 µm. Cement, ash, powdered coal, ferrous and nonferrous metal ores and 
others belong to it.  

Gas suspension flows in pipes are turbulent as a rule. However their turbulent structure and 
related with it integral parameters haven’t been sufficiently studied so far. As a rule, dust-laden gas 
flow is considered as a single phase fluid flow the density and viscosity of which are the same as 
those of the gas suspension. According to practice, for a model fluid like this, designed values of 
specific pressure drops, obtained by a formula analogous to pipeline hydraulics of homogeneous 
fluid, are too high in comparison with the experimental ones, i.e. actual specific pressure drops are 



less than the designed ones due to the fine suspension influence on the statistical mode of pulsating 
motion of the carrier medium and therefore on mean specific dissipation of the flow kinetic energy. 
Thus while using the hydraulic method, the designed dependence should be corrected for P L
determination, considering suspension influence on specific pressure drop.  

General expression for specific pressure drop, while gas suspension motion in pipe, can be 
derived on the basis of Bernoulli's equation set up for the suspension flow. While setting up this 
equation, the gas suspension is considered as heterogeneous continuous medium comprising two 
interacting continuums one of which refers to the gas phase and the other one – to the solid phase.  

The characteristic feature of the pipeline part under consideration, where the gas suspension 
motion is considered as low-pressure is relatively small pressure drops between the initial and the 
final flow sections. In this case the gas can be considered as non-compressed medium and its 
density as a constant value. The heat exchange mode is isothermal. Under the conditions, the 
Bernulli’s equation takes the following form [1]:  

 1 2 2 1( ),f pP P P g Z Z      (1) 

where Р1 и Р2 – pressure in the initial and final flow sections;  
fP  – friction pressure losses;  

p  – flow rate density of the gas suspension;  

g – acceleration of gravity;  
Z1 and Z2 – the height of the flow effective cross-section mass centers location against the 

plane of reference.  
Having divided both parts of the equation (1) by L  and denoted 1 2( )P P L  and  2 1z z L  

respectively by P L  and sin , where   – the pipe inclination angle against the horizontal plane 
will be:  
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Using the hydraulic method, the gas suspension is considered as a single-phase 
homogeneous fluid with the density m  and the effective viscosity m , thus by analogy with the 

expression of specific pressure losses in pipeline hydraulics for horizontal pipeline we have:  
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where m  – designed coefficient of hydraulic friction for the model fluid under 

consideration;  
D – pipe inner diameter. In the flow of fine dispersed particles when the material and air 

mean velocities can be equated to each other, the value mu  can be expressed in terms of the air 

velocity u:  

 (1 )m vu u  ,  (4) 

where v  – volume flow rate concentration of the mixture. 

From the expressions (3) and (4) we obtain: 
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Designed coefficient of hydraulic friction m  included into (3) depends upon Reynolds 

number Rem muD  , where m m mv     – gas suspension kinematic viscosity and upon inner 

pipe wall relative equivalent roughness exК D . 

For m  value determination a formula analogous to the Altschul formula, obtained for 

homogeneous fluid flow [3] is used: 
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Thus formula (5), considering (6) allows to determine specific pressure drop while 
homogeneous fluid motion, modeling dust-laden gas in pipes.  

Concerning the gas suspension dynamic viscosity m , the value m  for small values of 

volume concentration v  is determined by the formula analogous to suspensions [4]: 

 (1 3,5 )m v     ,  (7) 

where  – gas dynamic viscosity.  

Practically the actual hydraulic friction coefficient, denoted by m  in the powdered 

materials flow is considerably lower than the designed hydraulic friction coefficient m . As an 

example proving the above mentioned, in the figure 1 there is the ratio dependence of m m   to 

v  obtained after processing of the experimental data, taken from [5], for measuring fP L  while 

pneumatic conveying of cement with 0,021sd   mm fineness and 3060s   kg/m3density through 

a horizontal pipe with 0, 05D   m diameter. For determination of m m   for the set mean 

velocities of the gas, the value m  was evaluated by the formula:  
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where  f ex
P L  – experimental value of the specific pressure drop in the gas suspension 

flow. m  coefficient is evaluated by formula (6).  

As seen in figure 1, value m m   is about 0,2. Such a considerable hydraulic friction 

coefficient m  decrease in comparison with the designed coefficient m  can be physically 

explained by means of the turbulence suppression with powdered suspension. It should be noted the 
abovementioned specific pressure decrease is peculiar for gas suspensions containing powdered 
particles only. While hydraulic pipeline conveying of the particles the effect is not observed and in 
this case m m   . Thus the solids relatively high density S   and the particles inertness related to 

it in the process of their conveying by gas pulsating motion apparently play the crucial role in the 
turbulence suppression.   
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As we can see formulas (14) and (15) satisfactory approximate experimental data:  

а – ReS =0,058; b – ReS =0,4; c – ReS =2,63.  

Particularly it follows from formulas (13) and (14) that in limit case with 1   and 

1cru u   the value  21 1 1v     and in this case powdered suspension does not promote the 

turbulence suppression. Thus the algebraic equation positive root  

 20,022352Re 0,022Re 0,873 0,S S      (16) 

derived from formula (15) with 1   corresponds with the limit value  ReS cr
 at which the 

turbulence suppression will not be observed any more. Having solved the equation (16) we will 
have  Re 5,78T cr

 . The empiric formulas (13) and (14) scope is 
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CONCLUSION  

Summing it up formulas (9) – (11), considering (13) – (15), allow determining specific 
pressure drop fP L  at powdered solids pneumatic conveying velocities cru u . Check designs 

show that the method error is no more than 15-20 %. 

FURTHER DEVELOPMENT POSSIBILITIES 

For the conformation of the research results within pneumatic conveying wider parameters 
range additional experimental researches are planned. 
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