HKBL97 i JonITV

DIVA - A Simulation Environment for Chemical Engineering
Applications

Mohl, K.D., Spieker, A., Kéhler, R., Gilles, E.D., Zeitz, M.
Institut fiir Systemdynamik und Regelungstechnik, Universitit Stuttgart
email: mohl @isr.uni-stuttgart.de, fax: ++49-711-685-6371

Abstract

The detailed modelling and simulation of single process units as well as integrated production
plants are an issue of growing importance. As a software tool addressing this issue the simu-
lation environment DIVA is introduced. DIVA is an integrated tool because several numerical
methods like simulation, continuation, and dynamic optimization are available. In this paper, the
model representation and model implementation as well as the numerical methods employed in
DivA will be introduced. Several chemical engineering processes have been investigated with
Diva. The utilization of the numerical methods will be highlighted by an example from reactive
distillation.

1 Introduction

The efficient use of resources, improved process, safety and environmental aspects lead to stronger
integration of production processes. The close interaction within the same or among differ-
ent process units can result in complex process dynamics. Therefore, suitable tools to deal
with design problems and process operation of such complex processes are needed. Analy-
sis and svnthesis of the dynamic behaviour of integrated processes can be studied by applica-
tion of dynamic simulation, nonlinear systems analysis, and dynamic optimization. The inte-
grated simulation environment DIvA ' (Dynamischer Simulator Verfahrenstechnischer Anlagen)
[16, 10, 4, 1, 13, 5, 9], which is mainly being developed at the Institut fiir Systemdynamik und
Regelungstechnik combines these aspects in a single tool.

Dynamic models of process units and process plants are frequently represented by ordimary
differential systems (ODE) or differential algebraic systems (DAE) and typically result in highly
nonlinear large sparse systems with complex structure due to recycle streams and feedback con-
trol. Further complexity is added by process models including discrete components like valves,
discrete input functions, and bounded outputs of controllers. Thus, proper numerical methods
arc required to face these challenging tasks.

2 Model Representation and Program Architecture

In order to make process modelling and model implementation easy, the natural structure of a
process plant as a network of interconnected process units is used. These individual process units
are modeled in form of independent process unit models.

IBesides the authors, the following persons have contributed to DIVA or the code generator over the years: M. Bir,
E. Dieterich, V. Gehrke, A. Gerstlauer, C. Gouma, M. Groebel, A. Helget, P. Holl, G. Hutzl, A. Kienle, A, Krtner, .
Lauschke, C. Majer, M. Mangold, W. Marquardt, T. Obertopp, 5. Riumschiissel, H. Rettinger, J. Unger, H. Wieland.

HKBI-97 9 . JonlTV

For simple assembly of process unit models to plant models, all unit models are represented
in the same form. In DIvA, the dynamic process unit models are represented in form of ODE
(index zero) or linear-implicit DAE with a differential index of one [21]:

Az
By (g, uk, pi. t) - 7 i fe(zk, vk, pr, t) > 1y, (1)
yk=Hk'mk? $k{t=ﬂ}=$g
process unit model index & € 1 left side matrix B, € R"*"
states T e R™ function vector f € R"
inputs wg e R™ outputs vy e RT
parameters py € RP output matrix H, € R™*"
time t e R! initial values z{, &R

For distributed systems like tubular reactors, a discretization of the spatial domain using
the method of lines with finite differences, finite volumina, or collocation methods has to be
performed to obtain an ODE or DAE formulation. The representation of the unit model in form
of a DAE (1) is not always optimal for all kinds of process units, because a numerical treatment
using adaptive methods for the discretization would result in smaller computation times. But
a simulation in context with other units is only possible then, by using complex numerics and
software tools [8].

The connections among the process units are extracted from a flowsheet information file and
represented in form of a coupling matrix C' = {Cj; }, that connects the internal outputs y; of the
process unit j to the internal inputs u; of the process unit 1.

Ui = G{j R Gij e R T (2)

By using the coupling matrix, the unit model DAEs are combined to form the plant model DAE,
which has again the structure denoted in (1). Thus the model equations of the plant are treated
simultaneously.

The individual process unit models, can be taken either from the library of process umit
models or from user provided models that are implemented with the code generator of DIVA (see
Sec. 3).

Fig. 1 further shows that due to the modular structure of the simulation environment all nu-
merical methods available in DIVA can be applied to the plant model. The user may switch meth-
ods interactively. Additionally, the modular structure greatly simplifies the addition of numerical
methods. Moreover, the possibility of processing one plant model using diverse numerical meth-
ods like continuation or optimization in an integrated simulation environment like DIVA reduces
model implementation efforts because the model only has to be implemented once in the tool.
This is particularly important because the modelling and model implementation steps are still the
most time consuming in computer aided process engineering.

The simulation environment DIVA is implemented in FORTRANT77. At present it contains
about 900 routines, and runs on the following hardware platforms, VAX/AXP under Open VMS,
SUN under Solaris 2.x, and PC under OS/2 and Linux.

3 Model Implementation

DIVA contains a model library of generic process unit models. Examples of pre-defined process
unit models are: distillation columns, condensers, reboilers, CSTRs, tubular reactors, valves,
pumps, etc. The DIVA user selects individual process unit models from the model library and
aggregates these to plant models by specifying plant flow sheets.

WKBT-97 R | e) L
User
Command Interpreter
Mumerical Methods
NL-Equation- DAE- Index Event Dynamic Continuation
solver integrators Analysis Handlin Optimization methods
I-»-i Plant Model i
I 1 !
i 1
: Unit Modsls it lemw of :
| Code | |Library of - ropety :
i G " Unit Processor Pyl '
| eneraton | npodels comelations i
I . 1
| A A :
Flowsheet Unit Model parameters Simulation Physical Property Numeric
information Initial values results parameters parameters

Figure 1: Architecture of the DIVA simulation environment

The process unit models are implemented as several FORTRAN subroutines in a well de-
fined form. For each unit model (1), there is one subroutine for the mitialization. The main tasks
of this subroutine consist of reading the unit model parameters py and initial values =} from file,
initializing the patterns of the Jacobians 8(By. - &) /8xk, O(Bx - Tk)/Ouk, 3fk/0zk, O fe/Ou
and doing storage management. A second subroutine is called by the numerical methods and
evaluates the left side matrix B;. and the function vector fi. A third subroutine is handling the
output of simulation results to the computer console and to file. These three subroutines are
obligatory. If the unit model has to account for discontinuities or if analytical Jacobians are used,
additional subroutines are needed for the event handling and the evaluation of the Jacobians, re-
spectively. Note that every unit model can be used several times in one plant. This is possible by
using different names for the process unit in the plant and its representation in model equations.
For each process unit of the plant, the unit model parameters and initial values are given in an
individual file (Fig.1).

For the implementation of DIVA process unitmodels in the model library, the DIVA code
gencrator can be used [19]. The code generator was designed to relieve the user of the time
spending and error prone coding of the FORTRAN subroutines that represent the process unit
models in the DIVA model library. Only a single input file containing the whole model informa-
tion in symbolic form must be written by the modeler using the code generator input language.
The code generator translates a given model into the required three FORTRAN subroutines for
initialization, function evaluation, and management of the simulation output data. The user of
the code generator does not ueed to have intimate knowledge about the structure of the generated
FORTRAN subroutines.

The definition of a process unit model in the code generator lmguége is divided into several
parts. One of them is a general model description needed for documentation. The definition of
the parameters py. is distinguished by their type (structural, integer or real) and contains the names

RREEOT 11 JouI'TV

and default values. Therefore the parametrization of the process unit model is included. Further,
the defimitions of the input variables u; and the output variables y;. as well as state variables Th
with initial values x are parts of the code generator input file. A special construction is provided
by auxiliary variables. They can be used for subterms appearing more than once in the equations.
This increases the simulation performance because the assignments of these variables are Just
evaluated once instead of multiple evaluations of equation subterms. Auxiliary variables can be
reused by assigning them several times, because the equations and assignments are evaluated in
the order of their definition. This is minimizing storage consumption in connection with avoiding
of alternative usage of additional state variables extending the equation system. An additional
effect of auxiliary variables is a shorter and better readable unit model representation. Another
part of the input file is the definition of process values to be stored as simulation data. Finally,
the assignments of auxiliary variables and of model equations specifying the entities of the left
side matrix B}, and the function vector f} are given.

In order to generate the FORTRAN subroutines containing address calculations, storage
management, analytical patterns of Jacobians, and function evaluations, the code generator must
analyse and translate the model definition with respect of producing efficient code and avoiding
multiple pattern references. Therefore, powerful algorithms are implemented. The FORTRAN
code created by the code generator has a standard form and provides detailed comments. So it is
well readable, an important fact for changes or extensions, e.g., for handling of discrete events,
which are yet not supported by the code generator. Besides this, the code generator can be used
to generate the DIVA input files, containing the unit model parameters and initial values.

An important task related to the implementation of a process model is the documentation.
To achieve consistency in model formulation, parametnization, and documentation, an automatic
text documentation was implemented in the code generator to depict the model information of
the input file in a I*TEX document.

The code generator is implemented in the programming language LiSP and runs on the
following hardware platforms, SUN under Solans 2.x and PC under OS/2 and Linux.

4 Numerical Methods

Based on the model representation of process units and plants, a simultancous strategy is used
for the numerical solution of ODE and DAE in Diva. Due to the utilization of sparse matrix
techniques and standard numerical routines like Harwells and BLAS, DIVA is suitable for large
scale systems with as much as 10.000 state-variables with over 100.000 Jacobian entries. Systems
of this scale have been realized in Diva with reasonable computation times. In order to help the
user checking for proper model formulation, an algorithm for the structural index analysis and
tools for checking the patterns of the plant model are available in DIVA.

For the numerical integration of the plants DAE, several solvers using different algorithms
can be used. Namely, the integrators are SDASSL using a Backward-differentiation-method [2],
LIMEXS using an Extrapolation method [3], and RADAUSS [6] and SDIRK4 using Runge-
Kutta-methods. A special feafure of the SDIRK4 integrator is the simultaneous calculation of
sensitivities (derivatives of model states with respect to model parameters).

DIVA also provides different methods for solving systems of nonlinear equations which
are needed for the consistent initialization of the integration and the calculation of steady state
solutions. The solvers implemented in DIVA are a Levenberg-Marquardt-algorithm (Harwell
NS13 [7]) and a Newton-method (NLEQ1s [18]).

Besides these standard numerical methods, DIVA provides routines for event handling. This
includes explicit events that are triggered at known times like discrete input functions and implicit

!"!:'{H-?;Q? i2 Eaekt I : Honl'TY

events, where the date to trigger the event depends on the model states like bounded outputs of
controllers.

Further D1vA offers the possibility of a nonlinear analysis of the plant model. A continua-
tion method using an Euler-Newton predictor-corrector algorithm with local parametrization and
stepsize control [12] has been implemented in DIVA. This algorithm provides the possibility to
calculate parameter dependent stationary solution branches and thus is an excellent tool to exam-
ine the parameter dependent steady state behaviour of the process under consideration. Note that
not only stable but also unstable steady state solutions may be calculated by using the continua-
tion method. Moreover, this algorithm includes methods for the stability analysis of steady state
solutions and for the detection of bifurcation points, e.g., limit points (cf. Sec. 5).

Algorithms for dynamic optimization problems, like sensitivity analysis, parameter identi-
fication, experimental design, and trajectory optimization, are currently under development and
have been implemented in a test version [15]. For effective realization of these problems the
simultancous computation of sensitivities during the integration is crucial.

The simulator DIVA is connected in several ways with MATLAB 4.2, a commercial software
tool for matrix based systems analysis and synthesis. MATLAB is used for the visualization of
simulation results (DIVA-Graphik). Besides, it is possible to generate a linearized plant model in
MATLAB format that can be used for control analysis and design methods.

5 Applications

Below some applications from process industries that have been realised in DIVA are given.
There are production plants with several process units like a Styrene and a Butylacetate produc-
tion plant. Further there are single process units like (reactive) distillation processes [17], a novel
reactor concept (Circulation Loop Reactor) for air pollution abatement [14], simulated-moving-
bed chromatography, liquid chromatography, multiphase reaction processes, liquid-liquid-extraction
[22] and cristallization. Some of these process units are modeled as aggregation of subunits, e.g.
distillation columns can be aggrepated using unit models of column sections, reboilers, con-
densers, valves, etc..

As an example to highlight the advantages of an integrated tool, a reactive distillation column
for the production of Methyl rert-Butyl Ether (MTBE) is treated more extensively. The column
configuration [11], which has been studied in the literature, is shown in Fig. 2. For this config-

3 0.35 0.4

&15 D..E 0.25 0.
B [kmals]

Figure 2: Column configuration. Steady state solution branch for vanation of the bottom flow
rate 13 at a fixed reflux ratio R = 7. Solid line — stable, dashed line — unstable

KB4 gig S idonl 1y

uration and the operation conditions given in [11], multiple steady state solutions are abtained
as can be seen in Fig. 2, where a solution branch calculated using the continuation algarithm is
shown. The three possible solutions for & bottom flow rate B = 0,197 kmol/s are marked with
circles. From the stability analysis, it is known that the solutions points marked in Fig. 2 as @
and @ are stable, while @ is unstable.

Using dynamic simulation the domains of attraction for the steady state solutions can be
studied, e.g. starting from solution @ a pulse disturbance is introduced to the isobutene (IB)
mole fraction in the C4-feed. In Fig. 3 and 4, the transition from the stable solution ® at high
mole fraction of desired MTBE in the bottom product to the solution @ where little MTBE is
produced in the column is shown for an increase of IB of 5 % for three hours.

R

=
i
T

=
fol
L]

o
=1
T

o
in
T

=
.
I

maole fraction of MJBE at 1he bottom
)
1

=
L
T

=
c\...‘I'I.'i
= 15
ra b
al
oy
o

3
time [h]

Figure 3: Transition between steady states for a pulse disturbance of the C4 feed. Solid line -
maole fraction of MTBE at the bottom, dashed line — IB mole fraction in Cd-feed.

08—
Ly
o
=
= 0.6
s
1= -
T g4 /20
£ e
@ -
E 0.2~ /,_"l
10
'J' g;.?' ‘gg{ gg .
0 E’Eé’ﬂﬁ‘ﬂﬁﬁ e/ s

] slage no. [}

tirme [l

Figure 4; 3D-plot of column profiles for the transition between steady states for a pulse distur-
bance of the C4 feed.

HIBT-97 ;| RO Honl TV

Besides these chemical engineering problems also control design problems, applications
from biochemical engineering and automotive traffic models have been studied using DIvA.

Conclusions and Future Developments

In this paper we have shown the advantages of an integrated and interactive simulation tool,
which offers the opportunity to solve various engineering problems in the same environment.
This greatly reduces modelling and implementation efforts.

At present an extension of the nonlinear analysis tools with algonthms for the continuation of
higher order singularities like limit or Hopf points and periodic solutions is under development.
Further the implementation of other integrators (with simultaneous sensitivity calculation) and
other optimization routines are planned.

For the code generator tools for the preprocessing of distributed systems, the handling of
discrete events, and the use of analytical Jacobian are planned.

Further the knowledge-based process modelling tool ProMot is being developed. ProMot is
supposed to interactively support the modular development of process unit models by aggregating
and specifying composite and elementary modeling entities that are stored in an object-oriented
knowledge base [20]. ProMot is interfaced to DIvA by the code generator.

References

[1] M. Bir and M. Zeitz. A knuﬁlcdge-based flowsheet-oriented user interface for a dynamic
process simulator. Computers and Chemical Engineering, 14:1275-1280, 1990.

[2] K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical Solution of Initial Value
Problems in Differential-Algebraic Equations. North Holland, Elsevier Science Publishing
Co. Inc., 1989.

[3] P.Deuflhard, E. Hairer, and J. Zugck. One-step and Extrapolation Methods for Differential-
Algebraic Systems. Numer. Math., 51:501-516, 1987.

[4] E. D. Gilles, P. Holl, W. Marquardt, R. Mahler, H. Schneider, K. Brinkmann, and K.-H.
Will. Ein Trainingssimulator zur Ausbildung von Betriebspersonal in der chemischen In-
dustrie. Sonderheft atp - Namur Statusbericht *90, pages 261-268, 1990.

[S] M. Hager, K. Stephan, M. Bir, M. Zeitz, A. Kroner, and E. D. Gilles. Stoffdatenversorgung
des Simulators DIVA fiir dynamische Prozesse und Anlagen. Chemie-Ingenieur-Technik,
63:260-261, 1991.

[6] E. Hairer, S. P. Ngrsett, and G. Wanner. Solving Ordinary Differential Equations; I: Non-
stiff Problems, II: Stiff and Differential-Algebraic Problems. Springer, Berlin, 1987.

[7] Harwell Laboritories, Oxford, England. Harwell Library, 1996.

[8] A. Helget. Modulare Simulation verfahrenstechnischer Anlagen. PhD thesis, Universitiit
Stuttgart, 1997.

[9] A.Helget and E. D. Gilles. Dynamische ProzeB- und Anlagensimulation. In Hans Schuler,
editor, Prozefisimulation, pages 109-148. VCH, 1994.

[10] P. Holl, W. Marquardt, and E. D. Gilles. DIVA - A powerful tool for dynamic process
simulation. Computers in Chemical Engineering, 12:421-425, 1988.

HKBT-97 15 ___ Houl'TV

[11] R.Jacobs and R, Krishna. Multiple Solutions in Reactive Distillation for Methyl rert-Butyl
Ether Synhesis. Ind. Eng. Chem. Res., 32(8):1706-1709, 1993,

[12] A. Kienle, G. Lauschke, V. Gehrke, and E. D. Gilles. On the dynamics of the circulation
loop reactor — Numerical methods and analysis. Chem. Engng. Sci., 50(15):2361-2375,
1055

[13] A. Kroner, P. Holl, W. Marquardt, and E. D. Gilles. DIVA - an open architecture for
dynamic simulation. Computers and Chemical Engineering, 14:1289-1295, 1990.

[14] G. Lauschke and E. D. Gilles. Circulating reaction zones in a packed-bed loop reactor.
Chem. Ing. Sci., 49:5359-5375, 1994,

[15] C. Majer. Parameterschéitzung, Versuchsplanung und Trajektorienoptimierung flir ver-
fahrenstechnische Prozesse. PhD thesis, Universitit Stuttgart, 1997.

[16] W. Marquardt, P. Holl, D. Butz, and E. D. Gilles. DIVA - A flow-sheet onented dynamic
process simulator. Chemical Engineering and Technology, 10:164-173, 1987,

[17] K. D. Mohl, A. Kienle, E. D. Gilles, P. Rapmund, K. Sundmacher, and U. Holfmann. Non-
linear dynamics of reactive distillation processes for the production of fuel ethers. In Com-
puters chem. Engng. ESCAPE-T7, Trondheim, Norway, April 1997.

[18] U.Nowak and L. Weimann. A family of newton codes for systems of highly nonlinear equa-
tions. Technical Report TR 91-10, Konrad-Zuse-Zentrum fiir Informationstechnik Berlin,
1991.

[19] S. Raumschiissel, A. Gerstlauer, E.D. Gilles, and M. Zeitz. Ein Priiprozessor fiir den
verfahrenstechnischen Simulator DIVA. In G. Kampe and M. Zenz, cditors, Simula-
tionstechnik, 9. ASIM-Symposium in Stuttgart, pages 177-182. Vieweg Verlag, Braun-
schweig/Wiesbaden, 1994.

[20] F. Teinkle, A. Gerstlauer, M. Zeitz, and E. D. Gilles. PROMOT/DIVA: A prototype of
a process modeling and simulation environment. In 1. Troch and E Breitenecker, editors,
IMACS Symposium on Mathematical Modelling, 2nd MATHMOD, pages 341-346, Vienna,
Austria, February 1997. ARGESIM Report.

[21] T. Unger, A. Kréner, and W. Marquardt. Structural analysis of differential-algebraic equa-
tion systems — Theory and applications. Computers and Chemical Engineering, 19(8):867
— 882, 1995.

[22] G. Zamponi, J. Stichlmair, A. Gerstlauer, and E. D. Gilles. Simulation of the transient
behavior of a stirred liquid-liquid extraction column. In Computers chem. Engng., volume
20, Suppl., pages 963-968, April 1996.

