23

SCRIPTING LANGUAGES FOR SCIENTIFIC SOLUTIONS

Telpinskiy K., Ginkel M., Svyatniy V.A.
Max-Plank-Institute (Magdeburg), DonNTU

Abstract

Teplinskiy K., Ginkel M., Svyatniy V.A.. Scripting languages for
scientific solutions. Motivation: Realistic scientific tasks require a
certain set of features from modern simulation environments. One of the
most progressive methods for construction of the application structure is
using an object-oriented approach for the application and allow for the
control of the application with a scripting language. Results: In this
article we examine advantages of this method, new approaches for
interaction of scripting languages with an object-oriented CORE of the
application and approaches of using scripting languages together with
the graphic user interface. Examples of using Python language and main
integration technologies with C ++ are resulted.

Most modemn applications are developed in object-oriented style and
include a scripting language. The question is why? Seemingly, all algorithms
can be realized beforehand, without using additional scripting languages, but in
practice, this doesn't seem to work . For scientific solutions like modeling and
simulation of process models, there exists a variety of different algorithms and
realizations. Models and general solving algorithms can be standardized and
setup by changing some parameters. But in many cases it's necessary to use
combinations of different basic algorithms (e.g. equation solvers, integrators) to
find useful solutions, especially if you are working with processes in different
scientific fields. Every user has therefore own peculiarities, models, and
develops solutions with different solving algorithms. Furthermore the number of
useful basic algorithms is growing constantly. If computer programmers had to
implement all the different combinations of algorithms in the general simulation
software, it would be devastating and unmaintainable. On the other hand if the
users would have to control the software by single actions on a GUI their work
would be very inefficient. This problem is absolutely solved by the integration
of a scripting language. In this case the programmer don't need to develop all
possible combinations of software parts because users can implement this
themselves with the scripting language at application runtime. It becomes
unnecessary to constantly recompile and reinstall the project. User-defined
algorithms are located in script files, and every user can work with a limited set
of scripts for the work with his models. The only disadvantage is some loss of

performance but usually the more expensive parts in simulation are the basic
numerical algorithms. This question we'll examine later.

What are scripting languages? According to their destination they have
simple constructs and a comprehensible set of commands. The understanding of
the source code should be easy and the user should be quickly able to perform
simple tasks in it. Another important property of scripting languages is that they
are mostly orientated to their application domain (for example the build-in
language of Matlab). Scripting languages also belong to class of interpreters, it
means that there is a possibility of executing scripts step by step, and to execute
separate commands in command line mode, giving the user a handy interface
and making debugging easier.

In the design of a new version of the DIVA simulation environment
(nDIVA), Our task was to realize a scripting language, which should:

 have access to all numerical methods and data of nDIVA

e realize batch execution files and a command line interface for users

o make it possible to call scripts from the numerical methods (e.g. for a
partial or full description of models in the scripting language).

e design a set of commands well suited for the application domain.

The first question was to choose tools and realization method for the
scripting language. I started my investigations with analyzing the possibility of
making my own scripting language. There are different methods for making it.
But all of them boil down to a description of all lexical units and allowed
constructs of the designated language grammar bottom up and to the realization
of their semantics.

The starting point is to describe all regular expressions. Regular expressions
are sets of symbols, numeric, union or alternation of them, which create lexical
units,

For example:

<digit>::=0|1|2(3]|4|5|6/|7|8]|9
<small char>:=a|b|..|y|z

But regular expression cannot describe nested constructs, that's why we
should use a context-free grammar and make description in Backus-Naur Form
(BNF).

BNF can be used not only for expression description, but also for the
description of simple and compound operators. It gives the possibility to
describe practically all existent-programming languages.

85

Expression term factor

<expression=>::=<term> | <term> <addOperator>

<term>
<addOperator=> ::==+| -
<term> ::= <factor> | <factor> <mulOperator>
<factor>
<factor> ::= <indentifier> | <number>
(|<expression>)

<identifier> :=a|b|c|..|z

Figure 1. BNF description example (fragment of assignment operator)

The next problem, which I had to solve, was the following — what kind of
parsing algorithms should be used. There are two main possibilities: Top-down
parsers (LL) and Bottom-up (LR). LR parsing is based on shifting tokens on a
stack during recognition. LL parsing is based on recursive subroutines. I've
chosen the second one and realized it. The method is really simple: all terms are
organized as separate functions and call each other recursively and all of them
return error status (0) or number of characters used by this term (> 0). If there
are no more nested terms, the functions will be exited one by one. If syntax is
not correct the top function will get not the correct size of parsed source.

It really works properly but the problem is that it'll take you a lot of time
to describe and program all language constructs. It is necessary to program
identifiers, errors and decide all problems with memory allocation. It's really not
5o easy to make your own language because you should provide mechanisms for
e.g. exceptions and type casting. The main problem is that it's very hard to test
all elements and operation we used inside.

One possible variant I looked through and made examples is using
standard features of the OS Linux, using lexical and syntax analyzers LEX and
YACC. This feature gives possibility to make parsing of documents and make
simple programming languages. For using them you have to write files with
lexical and syntax (essentially machine-readable BNF) description elements and
you define connection between description and operations. Those are rather
good features, but they are not applicable for making complicated interpreters
because their generated code is hardly modified and partial parsing is not
supported.

After discussions we decided to use a standard interpreter which has good
capabilities for integration with C++ CORE and has been tested to maturity.
Now, in the modern software market there are a lot of good interpreters oriented
for solving some task or for common use. The most popular are JScript, Perl,
Python, VBScript and others. Perl is rather huge and complicated. VB is mostly
used for automatization of Windows applications. We decided to use Python
because:

it supports object-oriented development
e powerful high level programming constructs
e extensible and embeddable architecture
e remarkably clear syntax and coherent design

The next question was how to use Python together with an object-oriented
core written in C++. For solving this problem Python provides extensive set of
Python C/API functions.

In general there are two ways of using the script language: extending and
embedding. Another name for extending is dynamic loading. If you decide to
use it this way you should compile dynamically loaded libraries (shared library
of Linux). You have to define a structure, which contains list of names and
pointers to functions and a function for module initialization.

This is a small example:

#include "Python.h"
static PyObject * fnl(PyObject *self, PyObject *args)

{
int mode;
int oflags;
int nofork;
if (IPyArg_Parse(args, "(i1)", &oflag, &nofork))
return NULL;
return Py BuildValue("(i)", “mode”, mode);
}
static PyMethodDef sgi methods[] = {
{"getmode", fnl},
{NULL, NULL} /* sentinel */
3
void initshlib(void)
{

Py_InitModule("shlib", sgi_methods); }

This wrapping can be done automatically by using special tools. We used
SWIG (developed at Chicago University). It's a special software development
tool for interfacing different languages with C and C++. Actually you can only
call C functions from Python. But SWIG gives the possibility to use variables,
constants, classes, exceptions, templates, exceptions, make type casting, and to
extend wrapping by yourself (For a example we made a callback function
mechanism using the Python API). All this is possible because SWIG wraps
everything to functions and uses a mechanism of shadowing classes (Using C++
classes like original Python classes in scripts). You can also make emulations of
container types. For using SWIG you just have to make SWIG interface file

87

where all elements and special features are described by a special syntax and
run;

swig -python example.i

You get a C interface file wrap _example.c. This has to be linked then with
the wrapping modules.

When you compile this code into a shared library you can load it
dynamically into Python and use these functions in the modules namespace.

>> import shlib

>> mode = shlib.getmode(3 , 4)

>> shlib.showticks(7)

For using the shadowing of classes you should not import the shared
library directly but use the SWIG generated file example.py instead. This
module loads the shared library and provides the shadowing.

The other possibility is to use embedding of Python. It's very similar to
static linking. By this method you can rebuild the scripting language as an
interpreter with extensions. You use your programs main function and include
all modules you want to use. This program adds all functions to a list (the same
way as dynamic loading) and starts the interpreter. In this case we have to link
the program with all Python libraries and get a new interpreter.

The question is in which way we use it. On one hand if you use dynamic
loading your program it's just a set of shared libraries, Python libraries not
included. It's smaller and any way these libraries can be used by another
interface program or some ORB interface (if somebody prefer this way) at the
same time. Statically linked applications are rather big because of the mncluded
Python libraries but can combine Python shell with any interfaces inside the
program. And actually you don't need Python installed to user's PC, but provide
it within your software.

Another question is the way of using Python together with a GUI. In our
situation we had idea to make a server variant which provides description of
models through Internet HTTP protocol, making simulation in the server and
returning results of simulation. When you use some script language like Python,
Perl and etc., it really convenient variant for Web solution, because most of Web
Servers support executing CGI scripts or script embedding. Python is mostly
recommended for use with the Zope Web Server (because Zope supports
Python). As you can see on figure 1.2 in this case you can have remote access
though HTTP protocol of Zope Web Server to some Python scripts which
provide loading model, making simulation and getting result in HTML pages.
Of course we should have HTML(DHML, PHP, etc) user interface and the
server solves all problems with access administration.

Figure 2. Web server variant is based on Python language

There are a lot of possibilities of using scripting language. For some tasks
it's enough to extend Python by C++ modules and that's all, but for big projects
it's not so, the scripting language will be used in parallel or integrated with an
GUL I see 2 basic variants. First of all we can use Python and the GUI
separately. This variant is most convenient for the situation when only advanced
users use the language, and beginners use only the GUI. For realization of this
we have to compile modules as dynamically loaded libraries and load then from
Python or from the GUI (Figure 3). If we use a CORBA interface we should
build a “communicator” which loads libraries and provides them through
CORBA to the GUIL Another way is to compile Python libraries and CORE
statically(Figure 4). In CORE we have to provide access to modules which can
be dynamically loaded or statically linked. It means that some useful module can
be linked to CORE and be used in Python, another can be loaded dynamically.
In our task models and solver are compiled to shared libraries and have to be
loaded on the fly but there are some classes which are provided for common use.
They are compiled them into the CORE and attached to Python when the CORE
is executed. Of course we have to supply some “interface communicator which
provides information exchange between Python and the GUI.

Figure 3. Application structure in the case of separated using GUI and Python
shell

k9

-

Shared libraries. | Static linked application

f

GUI

i

! —
CORBA
Interface

Figure 4. Application structure in the case of statically linking of Python
and communication with external GUI

Finally, We want to note, that we have wide set of tools which give
possibility to incorporate and fully use script languages like powerful features
not only for scientific application, but business and any kinds of software(GIMP
for example) application. Information in this article just shows different
possibilities and advantages, but for different special cases this question is open.

REFERENCES

[1] M. Hifele, A. Kienle, E. Klein, A. Kremling, C. Majer, M. Mangold, A.
Spieker, E. Stein, R. Waschler, K.P. Zeyer, User Manual DIVA - 3.9 Institut
fir Systemdynamik und Regelungstechnik Universitit Stuttgart

[2] Mark Lutz, Programming Python, O'Reilly, October 1996, 1

[3] Devid W. Barron (University of Southampton), The world of scripting
languages, John Wiley & Sons, Ltd, 2000

[4] D.M. Beazley, Lightweight Computational Steering of Very Large Scale
Molecular Dynamics Simulations, presented at Supercomputing'96, 1996

[5] Official Python(www.python.org) and SWIG(www.swig.org) web sites,
including Python and SWIG documentation

[6] Mark Mitchell, Jeffrey Oldham, and Alex Samuel, Advanced Linux
Programming, New Riders Publishing, First Edition, June 2001

[7] B.J. Keller, Programming languages, Department of Computer Science,
Virginia Tech, 2000

[8] Mailing lists of Python (python-list@python.org) and
SWIG(swig@cs.uchicago.edu) projects.

JlaTa HajxomKeHns 1o peakoserii: 25.12.2003 p.

