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The interesting effect of stabilization in unbalanced gyroscope of Lagrange by the second rotating has
been found in the works of Donetsk school of mechanics under supervision of P. V. Kharlamov [1-5]. In
S.L. Sobolev's known work [6] it is shown that the Lagrange gyroscope if contains the ideal fluid is rather
unstable. In Y.N.Kononov's work [7] there is shown a possibility of rotation stabilization of the gyroscope by
introduction in a cavity transversal and coaxial partitions. However, in practice it cannot always be carried
out.

The possibility of stabilization by rotating rigid body in unstable rotation of the Lagrange gyroscope
containing an ideal fluid is shown in our study. The equations of the works [8, 9] are foundations of the
motion equations for the considered mechanical system. Some results of the work have been informed on
the ICTAMO4 [10] .

Consider rotation of the Lagrange gyroscope  with cavity
containing an ideal incompressible fluid around a fixed point O,.

The considered gyroscope ( body S,) has the common pomt O,
with the second rotating rigid body S;. The body S, consists of a

rigid body S and the ideal fluid containing in the rigid body
cavity (fig. 1).
Rigid bodies S, and S, are connected in a point O, by the

elastic restoring spherical hinge with coefficient of elasticity &
(k>0). Let us consider the possibility of stabilization for unstable

rotation of a body S, by rotating rigid body S .
The first rigid body S, and a fluid are rotating completely

with angular velocity @, around an axis of geometrical and

dynamic symmetry O,0,, and the second rigid body S; - with

angular velocity w,, around an axis O,C,.

Fig. 1
The commgn point O, lies on a straight line O,C,, where C, and C, - accordingly the

centers of mass of bodies S, and S .

The considered system is a partial case of system of the connected rigid bodies with
the cavities containing a fluid, investigated in works [8, 9] and therefore the characteristic
equation of motion is as follows:
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m, and m, - accordingly mass of a body S, and a rigid body S); 4, and C, - accordingly
the equatorial and axial inertia moments of the bodies S, and S) concerning a point O,
(i=1,2); A =Aw,, 4 =1-2 /o,.

Coefficient of inertial connection FE, and eigen numbers A, are found from the

solution of a corresponding boundary value problem and are defined only by geometry of a
cavity. Values of the sizes for ellipsoidal, cylindrical and conical cavities are given in [11].

The necessary condition for stability of permanent rotation in the considered system is
the following: all roots of the characteristic equation (1) are real.

The equation (1) in case absence of relative motion of a fluid (£, =0, a "frozen"
fluid) coincides with the equation obtained and investigated in works [4, 5].

At k =oo (the cylindrical hinge) the equation (1) is reduced to the equation
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If elastic restoring moment is absent (k£ =0) and the center of mass of the second
rigid body S, coincides with the common point O, (¢, =0, u=0) the characteristic

equation (1) is divided into two independent equations and in this case the possibility of
stabilization for unstable rotation of a rigid body with a fluid by rotating rigid body is absent.
As is known [11] in the majority of practically important cases in the equation (1) it is
enough to take into account only the basic tone of fluid oscillation (7 =1). It is always true
for ellipsoidal cavities because from an infinite spectrum of eigen frequencies A, the

harmonic corresponding to a unique value A, is raised [11].

If take into account only the first harmonic (7 =1) in the equation (1) this equation can
be written as a polynomial of the fifth degree

a, A +al +a,l’ +a, A +a,d+ag =0, 3)

where

=AA, —u’ >0, a =(44,—u)A +A4,C + A4 C,w,,
a,=A,C A +g(4'a, + A,a)) — (A4 + A, + 2k + (A4, +C)C,0,,,
a, =[g(Aa; + 4,a)) — (4 + 4, + 2)k14 — Ck + g(a,C; +a,C,04,) + (Ci4 — k) C,0,,,
a, =(a,g —kK)C\A, +[a)ayg — k(a) +ay)]g + (a8 — k)4, Cy0,,,
as = gla,a,g —k(a; +a;)1,,
A =A-E, C =C —-E, C =Cuw,, E =Eo,.



Conditions of the reality of roots of the equation of the fifth degree are as follows :
d=M}-MM,>0,
d,=4d,d,,—-9d, >0,
d,=d,h, —2h} >0,
d, =d,(4hh, — h,h,) —2(2d,h, — hh,)* >0.

(4)

Here
a,=M,>0, a =5M,, a,=10M;, a,=10M,, a,=5M,, a,=M;
d,=6M; -5SM,M,-MM,, d,=M,M,-—MM,,
h =d,(16h, —15h, ) — 6hyh,,, h, =8d,hy, +48h,h, —8hy,d,,,

h, = 6hhy, — hyd,,, h, =8d,hy —3h,h,s,

ho=MM,-MM,, hy=6M*-5M,M,—-MM.,
hy=M,M,—~MM,, h,=MM,—MM,,
hy=MM,~MM,, h,=MM, MM,

After simple transformations it is possible to show that the system of inequalities (4) is
equivalent to inequalities

d, >0,
d, >0,
~ ()
d, >0,
d . >0,
where d; = 2dlj3, d, = 2d1234; 33 and 54 - accordingly a polynomials 6 and 8 degree on

a, (i=0,5).

Stabilization of rotation of a rigid body with a fluid can be carried out by the following
parameters of the second rigid body: w,,, k£, C,, 4,, m,, c,. As parameters C, and o,
enter into coefficients @, by product we shall appoint this product through ,.

We research influence of parameter @, on a possibility of stabilization. For this
purpose we designate

a, =50, +b), a,=10a,0,+b,), a,=10(a,0,+b,), a,=5(a,w,+b,). (6)
We receive after substitution ratio (6) in inequalities (5)
d,o; +d,w,+d, >0,
d,,0) +d,o) +...+d,w, +d,, >0,

(7)

6 5
d, 0, +d o) +...+d, o, +d;, >0,

8 7
do, +d,,o, +..+d,o,+d, >0,
where



diy =ap >0, dy, =53 (3d; —4d,a;),
dsg = 283,0,d5d, —9a ;] —16,d; —128,5d, +8d5d; =dyy k> +dsok” +dyk +dsg
dyg = 128,8,8,0, — 2737, —328,0; — 328504 + 168505 = d gk’ +dypk” +dyyk +d gy,
a =4, 10d, = A\, +C; >0, 103, =a,g—k, 5d, =(a;g—k)\,,
dyz =24, 1625>0, ds =2dsy, > 0.

At k>ga, @,<0, @<0 and d, >0. Coefficients d,, and d, are cubic

polynomials respecting parameter k£ with positive coefficients at the higher degrees. Thus, at
big enough elastic restoring moment d,, >0, d,, >0 and d, >0 also there is such value o,

at which inequalities (7) are valid. Hence, at big enough ®, and k& stabilization for unstable

rotation of a rigid body with a fluid is possible.

In work [5] it i1s marked that influence of rigidity in the spherical hinge on effect of
stabilization for unbalanced rigid body has the complicated character. Therefore we consider
influence of the elastic restoring moment on a possibility of stabilization for unstable rotation
of a rigid body with a fluid. For this purpose we designate

a, =10(a,k +b,), a,=10(a,k +b,), a,=5(a,k+b,), a,=ak+b,. (8)
After substitution (8) in inequalities (5) we receive
dk+d,>0,

d, k> +d k> +d,k+d,, >0,
dyk” +dk* +... +dk+dy, >0,
dk’ +d,k° +..+d,k+d,>0.

)

Here
d, =-a,a,, d,,=-24a,a,, d,,=160a,a;(3a,da,—2a;),
d,, =128a,a; (40a,d, —25a;a, + 274, a; +50a,a, —90a,d,d,ds ),
102, =—(4, + 4, +2u) <0, 10a, =—{(4 + A4, +2u)A, +C; +®,]<0, (10)
5d, =—{(C, + @) 4 +(a; +a,)g]<0, @5 =—(a; +a,)gh <0.
From (10) follows that d,, >0, d,; >0 and coefficients d,, and d,, are polynomials
accordingly 2-nd and 4-th degree relative to @, with positive coefficients at the higher

degrees. At big enough @, and k& inequalities (9) are valid and as it was earlier marked
stabilization for unstable rotation of a rigid body with a fluid can be possible.
Let's consider a case of the cylindrical hinge (k£ =0). In the case instead of inequalities
(9) it 1s more handy to use the equation (2) and at n=1 to write down conditions of the
reality of roots of the cubic equation
g A +3g, 4 +3g,A+g,=0
as

d=4(g’ —2,8,)(g —2.8;)— (2.8 — g,g;)° >0
or



d,w, +d0, +d,0; +dw,+d,=0, (11)
where
d,=3a; >0, d =6a,(ab +b,) - M@ a, + ay),
d, =3[(b] —4a,b,)a, +2(a,a, +2bb,)a, +b; —4ba,],
d, =6[(a,a;b, +b}b, —2a,b})a, + a,a,b, + bb; —2a,b’],
d, =4(b} —ayb,)(b; —ba,)— (bb, —a,a,)’,
go=A + A, +2u, 3g,=(4 + A, +2u)0 +C +w,,
a,=1/3, a@,=1/3A, b =(A4 + A4, +2u)A, b,=(a, +a,)g+CA,.
So as d, >0 if to assume that corresponding equation to an inequality (11) has three
positive roots and the inequality has the solution
{0, <o, <w,}J 1o, <o, },

and if one positive root @, then o, > ;.

Thus at big enough elastic restoring moment and the big angular velocity rotations of
the second rigid body stabilization for unstable rotation of rigid body with a fluid is possible.

For confirmation of results of analytical researches numerical
calculations have been carried out for ellipsoidal cavity on formulas

(7), (9) at the following values of parameters: w,, =0, 10,10%,10°;
k=0,1,10,10°,10°; @, =1+500; m, =const; f,=0,02+4
p=cla; A4,=C, =0. The second rotating rigid body was

slightly concave, convex and flat thin circular disk (fig. 2).

The results of numerical calculations for not free system are
presented on fig. 3-6 (¢, =0, m, =const, E, #0). The areas of
stability are dark.

Following analytical and numerical researches the conclusions are made:

1. To stabilize for unstable rotation of a rigid body with cavities containing a fluid is
possible by rotating rigid body.

2. If elastic restoring moments are absent and the center of mass of rotating rigid body
coincides with the common point of two rigid body, stabilization will be impossible.

3. The effect similar to action of restoring moment on considered system is observed at
the big angular velocity of rotation of a rigid body (@, >100) and at the big elastic
restoring moment (£ >100).

4. For the counterbalanced rotating rigid body (c, < 0) the effect of stabilization increases

in comparison with unbalanced rigid body (¢, >0).



k=100, @, =0 k=100, @, =0 ¢

3 0,01 1

Fig. 3 Fig. 4
k=100, ®,, =1000 k=1000, @,=1000

®01
500 g

400
300
200

100

S

0,01 1

3 0,01 1

Fig. 6

2
Fig. 5
References

1. Savchenko A. J. Stability for stationary motion of mechanical systems. Kiev: Naukova dumka, 1977,
160 p. (in Russian).

2. Kovalev A. M. Stability for uniform rotations of heavy gyrostat around of the principal axis. Appl.
Math. and Mech. (AMM), 1980, 44, Ne 6, (in Russian).

3. Lesina M. E. About stabilization of based counterbalanced Lagrange gyroscope. Mech. rigid body ,
1979, 11, p. 88 — 92, (in Russian).

4. Varkhalev Y. N., Savchenko A. Y., Svetlichnaja N. V. To a question for stabilization of based
unbalanced Lagrange gyroscope. Mech. rigid body, 1982, 14, p. 105 — 109, (in Russian).

5. Svetlichnaja N. V. About effect of stabilization of a based unbalanced gyroscope by the second
rotating. Mech. rigid body, 1989, 21, p. 74 — 76, (in Russian).

6. Sobolev S. L. On the motion of a symmetric top with a cavity filled a fluid. Appl. Math. Tech. Phiz.
(AMTP), 1960, Ne3, p.20-55, (in Russian).

7. Kononov Y. N. About influence of partitions in a cylindrical cavity on stability of uniform rotation of
Lagrange gyroscope. Math. physics and mechanics, 1992, 7 (51), p.33 — 37, (in Russian).

8. Kononov Y. N. On the motion of the system of two rigid bodies with cavities containing a fluid.
Mech. rigid body, 1997, 29, p. 76-85, (in Russian).

9. Kononov Y. N. On the motion of the system of connected rigid bodies with cavities containing a fluid
Mech. rigid body, 2000, 30, p. 207-216, (in Russian).

10.Kononov Yu. N., Khomyak T. V. Stabilization by rotating rigid bodies for unstable rotation of a rigid
body with cavities containing a fluid. ICTAMO04 Abstracts and CD-ROM Proceedings. Warsaw,
Poland: IPPT PAN, Warszawa, 2004, 320 p.

11. Dokuchayev L. V., Rvalov R. V. About stability for stationary rotation of a rigid body with a cavity
containing a fluid. Akad. Nauk SSSR, Mech. Rigid body, 1973, Ne 2, p. 6 — 14, (in Russian).



