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The interesting effect of stabilization in unbalanced gyroscope of Lagrange by the second rotating has 

been found in the works of Donetsk school of mechanics under supervision of  P. V. Kharlamov [1-5]. In   
S.L. Sobolev's known work [6] it is shown that the Lagrange gyroscope if contains the ideal fluid is rather 
unstable. In Y.N.Kononov's work [7] there is shown a possibility of rotation stabilization of the gyroscope by 
introduction in a cavity transversal and coaxial partitions. However, in practice it cannot always be carried 
out.  
 The possibility of stabilization by rotating rigid body in unstable rotation of the Lagrange gyroscope 
containing an ideal fluid is shown in our study. The equations of the works [8, 9] are foundations of the 
motion equations for the considered mechanical system. Some results of the work have been informed  on  
the ICTAM04 [10] . 
 

Consider rotation of the Lagrange gyroscope  with cavity 
containing an ideal incompressible fluid around  a fixed point 1O . 
The considered  gyroscope ( body 1S ) has the common point 2O  
with the second rotating rigid body 0

2S . The body  1S   consists of a 
rigid body 0

1S  and the ideal fluid containing in the rigid body 
cavity (fig. 1). 

Rigid bodies 0
1S  and 0

2S  are connected in a point 2O  by the 
elastic restoring spherical hinge with coefficient of elasticity k  
( 0k ). Let us consider  the possibility of stabilization for unstable 
rotation of a body 1S  by rotating rigid body 0

2S . 
The first rigid body 0

1S  and a fluid are rotating completely 
with angular velocity 01  around an axis of geometrical and 
dynamic symmetry 21OO , and the second rigid body 0

2S  - with 
angular velocity 02  around  an axis 22CO .  

The common point 2O  lies on a straight line 21CO , where 1C  and 2C  - accordingly the 
centers of mass of bodies 1S  and 0

2S . 
The  considered system  is a partial case of system of the connected rigid bodies with 

the cavities containing a fluid, investigated in works [8, 9] and therefore the characteristic 
equation of  motion is as follows: 
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1m  and 2m  - accordingly mass of  a body 1S  and a rigid body 0
2S ; iA  and iC  - accordingly 

the equatorial and axial inertia moments of the bodies 1S  and 0
2S  concerning a point iO  

( 2,1i );  010
' 1~,~  nninn  . 

 Coefficient of inertial connection  nE  and eigen numbers n  are found from the 
solution of  a corresponding boundary value problem and are defined only by geometry of a 
cavity. Values of the sizes for ellipsoidal,  cylindrical and conical cavities are given in [11]. 

The necessary condition for stability of permanent rotation in the considered system is 
the following: all roots of  the characteristic equation  (1)  are real. 

The equation (1) in case  absence of  relative motion of a fluid ( 0nE , a "frozen" 
fluid) coincides with the equation obtained and investigated in works [4, 5]. 

At  k  (the cylindrical hinge) the equation (1) is reduced to the equation 
,02~~
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If  elastic restoring moment is absent ( 0k ) and the center of  mass of  the second 
rigid body 0

2S  coincides with the common point 2O  ( 02 c , 0 ) the characteristic 
equation (1) is divided into two independent equations and in this case the possibility of 
stabilization for unstable rotation of a rigid body with a fluid by rotating rigid body is absent. 

As is known [11] in the majority of practically important cases in the equation (1) it is 
enough to take into account only the basic tone of fluid oscillation ( 1n ). It is always true 
for ellipsoidal cavities because from an infinite spectrum of eigen frequencies n  the 
harmonic corresponding to a unique value 1  is raised [11]. 

If  take into account only the first harmonic ( 1n ) in the equation (1) this equation can 
be written  as a polynomial of the fifth degree 
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Conditions of the reality of roots of the equation of the fifth degree are as follows : 
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After simple transformations it is possible to show that the system of inequalities (4) is 
equivalent to inequalities 




















,0~
,0~
,0
,0

4

3

2

1

d

d

d
d

      (5) 

where  4
2
14313

~2,~2 dddddd  ; 3
~d   and  4

~d  - accordingly a polynomials 6 and 8 degree on 

ia  ( 5,0i ). 
Stabilization of rotation of a rigid body with a fluid can be carried out by the following 

parameters of the second rigid body: 02 , k , 2C , 2A , 2m , 2c . As  parameters 2C  and 02  
enter into coefficients ia  by product we shall appoint this product through 0 . 

We research influence of parameter 0  on a possibility of stabilization. For this 
purpose we designate 
     ).~(5),~(10),~(10),~(5 4044303320221011 baabaabaabaa    (6) 
We receive after substitution ratio (6) in inequalities (5)  
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where 
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At  *
1gak    0~

3 a , 0~
4 a   and 024 d . Coefficients 36d  and 48d  are cubic 

polynomials respecting parameter k  with positive coefficients at the higher degrees. Thus, at 
big enough elastic restoring moment 024 d , 036 d  and 048 d  also there is such value 0  
at which inequalities (7) are valid. Hence, at big enough 0  and k  stabilization for unstable 
rotation of a rigid body with a fluid is possible. 

In work [5] it is marked that influence of rigidity in the spherical hinge on effect of 
stabilization for unbalanced rigid body has the complicated character. Therefore we  consider 
influence of the elastic restoring moment on a possibility of stabilization for unstable rotation 
of a rigid body with a fluid. For this purpose we designate 
         .~),~(5),~(10),~(10 555444333222 bkaabkaabkaabkaa    (8) 

After substitution (8) in inequalities (5) we  receive 
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From (10) follows that 011 d , 023 d  and coefficients 35d  and 47d  are polynomials 
accordingly 2-nd and 4-th degree  relative to 0  with positive coefficients at the higher 
degrees. At big enough 0  and k  inequalities  (9) are valid and as it was earlier marked 
stabilization for unstable rotation of a rigid body with a fluid can be possible. 

Let's consider a case of the cylindrical hinge ( k ). In the case instead of inequalities 
(9) it is more handy to use the equation (2) and at  1n   to write down conditions of the 
reality of roots of the cubic equation 
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So as  04 d  if to assume that corresponding equation to an inequality (11)  has three 
positive roots   and  the inequality has the solution 

    ,30201    

and  if one positive root *
0   then  *

00   . 
Thus at big enough elastic restoring moment and the big angular velocity rotations of 

the second rigid body stabilization for unstable rotation of rigid body with a fluid is possible. 
 

For confirmation of results of analytical researches numerical 
calculations have been carried out for ellipsoidal cavity on formulas 
(7), (9) at the following values of parameters: 32

02 10,10,10,0 ; 
32 10,10,10,1,0k ; 500101  ; constm 1 ; 402,01   

ac / ; 00101 CA . The second rotating rigid body was  
slightly concave, convex and flat thin circular disk (fig.  2). 

The results of numerical calculations for not free system are 
presented on fig. 3-6 ( 0,,0 112  Econstmc ).  The areas of 
stability are dark.  

 
Following analytical and numerical researches the conclusions are made: 

1. To stabilize for unstable rotation of a rigid body with cavities containing a fluid is 
possible by rotating rigid body. 

2. If elastic restoring moments are absent and the center of mass of rotating rigid body 
coincides with the common point of two rigid body, stabilization will be impossible. 

3. The effect similar to action of restoring moment on considered system is observed at 
the big angular velocity of rotation of a rigid body ( 1000  ) and at the big elastic 
restoring moment ( 100k ).  

4. For the counterbalanced rotating rigid body ( 0c2  ) the effect of stabilization increases 
in comparison with unbalanced rigid body ( 0c2  ). 

 
 
 
 

Fig. 2 
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