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Abstract 

In the paper an evolutionary approach for functional 
testing of digital circuits is considered. A genetic 
algorithm for testing digital multiplier is proposed. The 
main target of the proposed method is to generate as 
short as possible functional test wih as high as possible 
fault coverage with the goal to use the generated patterns 
as the input data for embedded  functional BIST. 
Experimental data of the program realization is also 
represented. 

1. Introduction 
During the last thirty years of XX century, the ideas of 
evolution theory, self-organization and genetics 
developed for biological systems, were extended to the 
technical systems, hardware and software. The new 
direction in the theory and practice of artificial 
intelligence, called evolutionary computations, rapidly 
progresses now. The term evolutionary computations is 
applied to determination of the search, optimization or 
learning algorithms based on some formalized principles 
of natural evolutionary selection. Evolutionary 
computations use various models of the evolutionary 
process, which are differed by diverse representations of 
solutions and genetic operators. This approach is 
successfully applied for digital circuits testing [1,2]. In 
the current paper the evolutionary approach to functional 
testing of digital circuits is considered. 
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Figure 1: Multiplier 

 
Let us consider functional test generation for the 

combinational circuit of multiplier (Fig.1). Suppose that 
the operands X, Y and the result Z are integer numbers for 
simplicity (additional information about the multiplier 
circuit may be introduced). The task consists in functional 

test generation of the minimal length desirable. A genetic 
algorithm is applied for solving this problem. 

 
2. Genetic algorithm for functional test 
generation 
Genetic algorithms (GA) are one of the evolutionary 
computations paradigms. They are search algorithms 
based on the principles, which are similar to the natural 
selection principles [3]. GA use a random directional 
search to construct (sub)optimal solution of the given 
problem. A subset of points (which are potential problem 
solutions) is chosen from the search space. This subset is 
called a population in terms of the natural selection and 
genetics. Each potential solution of the problem – 
individual is presented by chromosome – some gene 
structure. An arbitrary gene of chromosome takes a value 
from some alphabet that encodes the points in the search 
space. In the simplest case, an individual can be 
represented by binary encoded string (for example 
0011101). It makes the GA attractive for solving the 
problem of logic circuits test generation, where the 
solution is presented as a set of binary patterns or 
sequences of binary patterns. A fitness function is 
determined on the solution set. It allows to estimate the 
closeness of each individual to the optimal solution – the 
ability of survival. The genetic search of solution consists 
in the simulation of such artificial population evolution. 
Creation of new individuals during the population 
evolution is based on the reproduction process 
simulation. In this case the individuals-solutions involved 
in reproduction process are called the parents, contrary 
the obtained individuals-solutions are called the 
offsprings. In each generation a set of individuals-
solutions is constructed using the parts of individuals-
parents and adding new parts with “good properties”. 
Thus the GA effectively uses the information 
accumulated during evolution process. 

For solving any problem with genetic algorithm, first 
of all, we have to define: 1) the form of individual 
representation – encoding; 2) genetic operators – 
crossover and mutation; 3) fitness function (Fig.2). 
Further we shall consider all these factors with reference 
to the given problem. 
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Figure 2 

 
In the following we will consider the definition of all 

GA components with the reference to the formulated 
problem. 

1) A single test pattern consists of two integer 
numbers X and Y – the operands of multiplier. Therefore 
a decision is represented as two-component vector (X,Y). 
On the other hand, we will use binary strings – codes of 
the numerical vectors, as decision representation. 

2) Two types of genetic operators (crossover and 
mutation) are used – arithmetical and binary. 

In accordance with arithmetical crossover for two 
parents  and , a new 

individual-offspring 

),( aa YX=A ),( bb YX=B

A~  is defined as follows  

ba XXX **)1(~ αα +−= , 

ba XYY **)1(~ αα +−= ,  
where ]1;0[∈α . 
Since we consider integer operands of multiplier and the 
described numerical crossover can generate real numbers, 
then we have to round off the generated components of 
the vector )~,~(~ YX=A . 

Binary crossover is executed according to the classical 
scheme represented below in Fig. 3  

 

 
 

 
Figure 3: One-point and two-point binary crossover 

operators 
 

At the same time each type of crossover is applied 
with its own probability  (binary) and c

bP c
nP  

(numerical): . Note, that both types of 
crossover are used as it is shown in the algorithm 
pseudocode (Fig.5). 
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For mutation operators we also use two types – 
arithmetical and binary mutation. Arithmetical mutation 

for functional testing is implemented as follows. New 
individual ),( aa YX ′′=′A -«mutant» is obtained from old 
individual ),( aa YX=A  according to expressions   

aaa XXX *∆±=′ , 

aaa YYY *∆±=′  
where ∆  - is small number. Obtained individual A’ must 
be rounded off also. 

Binary mutation is implemented in accordance with 
the traditional method (Fig.4) 

 
0 1 0 0 1 0 1 1  → 0 1 0 0 0 0 1 1  

Figure 4: Binary mutation 
 
At the same time each type of mutation is applied with 

its own probability  (binary) and m
bP m

nP  (numerical): 

. 1<<+ c
n

c
b PP

3) At the preliminary stage the test pattern quality is 
evaluated in the following way. The number of inverted 
bits in the multiplication result is estimated for each bit 
inversion in the current test pattern. The experiments 
have shown that a test pattern, where any bit inversion 
will lead to at least one bit inversion in the multiplication 
result, can be always found. 

Our goal is now to generate test patterns such that the 
bit inversions of input operands produce maximum bit 
inversions in the multiplication result (it would be 
desirable to have all bit inversions). Thus we can define 
the matrix P of dimension , where , if i-
th input bit inversion produces j-th output bit inversion. 
The matrix P is defined in the following way. First, all 
the matrix cells are zeros. Next, in the selected input 
pattern every bit is inverted. The matrix cells  are 
defined in accordance to the produced bit inversions in 
the output pattern. The fitness function is defined as 
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Further the genetic algorithm of functional test 
generation is considered, its pseudocode is represented in 
Fig. 5. The test generation of single patterns is executed 
in AddBestInputToTest()function. After the 
next iteration of new population generation an input test 
sequence is changed. If appending the best individual of 
the population leads to increasing test sequence fitness-
function, then it is included to test. 

The main target of the proposed method is to generate 
as short as possible functional test wih as high as possible 
fault coverage with the goal to use the generated patterns 
as the input data for embedded  functional BIST [5]. The 
final fault coverage of the BIST can be increased to 100% 
by improving the controllability and observability of the 
circuit. 
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GA(PopulationSize,MaxIteration) 
{ 
  // Prepare start population 
  GenerateStartPopulation(PopulationSize); 
  PopulationNumber=0; 
  // Main GA loop starts here 
  while(Stop Criterion is not reached) 
  { 
    NewPosition=0; 
    for( int i=0 ; i<PopulationSize ; ++i) 
    { 
      // Do select scheme here 
      DoSelect(ParentA,ParentB); 
      // Do crossingover scheme here 
      
DoCrossingover(ParentA,ParentB,Offspring); 
      // Do mutation here 
      DoMutation(Offspring); 
      // Add new individual  
         to intermediate population 
      AddToIntermediatePopulation(Offspring, 
      NewPosition); 
      ++NewPosition; 
    } 
    ConstructNewPopulation(PopulationSize); 
    AddBestInputToTest(); 
    // increase the population number 
    ++PopulationNumber; 
  } 
  // report the results both screen & file 
  DoReport(); 
} // end GA 
DoSelection(ParentA,ParentB) 
{ 
  EvaluateFitness(Population,PopulationSize, 
  Fitness); 
  DoRouletWheelSelection(ParentA,ParentB, 
  Population,PopulationSize,Fitness); 
} 
DoMutation(Offspring) 
{ 
  // select with small probability – do  
     mutation or not 
  if(NeedMutation()) 
  { 
    // select the mutation sheme 
    SelectMutationSheme(); 
    if( FuncionalMutation ) 
    { 

      DoFunctionalMutation(Offspring); 
    } 
    else 
    { 
      DoBinaryMutation(Offspring); 
    } 
  } 
} 
DoCrossingover(ParentA, ParentB, Offspring) 
{ 
  // select the crossingover sheme 
  SelectCrossingoverSheme(); 
  if( FunctionalCrossingover ) 
  { 
    DoFunctionalCrossingover(ParentA,ParentB, 
    Offspring); 
  } 
  else 
  { 
    DoBinaryCrossingover(ParentA,ParentB, 
    Offspring); 
  } 
} 
ConstructNewPopulation(PopulationSize) 
{ 
  // construct temporary population 
  CombinePopulations(Population, 
  IntermediatePopulation); 
  // sort temporary population in ascending  
     value of fitness 
  SortCombinedPopulationByFitness(); 
  // select as next population top of  
     temporary population 
  CopyTopOfPopylation(PopulationSize); 
} 
 
DoFunctionalMutation(Offspring) 
{ 
  SelectSmallDelta(); 
  Offspring=Offspring±Delta*Offspring; 
} 
DoFunctionalCrossingover(ParentA,ParentB, 
Offspring) 
{ 
  SelectSmallAlpha(); 
  Offspring =(1-Alpha)*ParentA+Alpha*ParentB; 
} 

Figure 5: GA pseudocode 
 
 

3. Experimental results 
The suggested algorithm was implemented in C++ 

language in C++ Builder environment. Experimentally 
there were defined the values of crossover and mutation 
probabilities  and , coefficients 8.0=cP 01.0=mP

5.0=α  and  for functional crossingover and 
mutation accordingly, the individuals number in 
population – 100. Under these conditions the dependence 
of test fitness-function (fault coverage) from generations 
number was investigated. The experimental data in Fig. 6 
show that fitness-function value is stabilized enough 
quickly. Hence the boundary value of GA generations 
number is chosen equal to 40. 

5.0=∆
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Fig.6. Growth of fitness-function value
depending on generation number
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Fig.7. Dependence of test fault coverage and test length 
from operand bit capacity. 

 
Then the results of the experiments to show the 

dependence of test fault coverage and test length on the 
operand bit capacity are shown in Fig.7. Average results 
of 10 experiments are cited. In Table 1, an example of the 
functional test for the 32-bit multiplier is presented, 
which consists of 11 patterns.. 

 
4. Conclusion  

The test generation for 32-bit multiplier, in 
accordance with considered approach, shows that 
functional tests with 70% coverage relatively to primary 
input bits inverting were generated enough quickly. The 

test length is equal to 10 patterns for 32 primary inputs. 
Thus an evolutionary approach to functional test 
generation, at the example of multiplier, was investigated 
and proposed.  

The main target of the proposed method is to generate 
as short as possible functional test to reduce the amount 
of input data for embedded  functional BIST. The final 
fault coverage of the BIST can be increased to 100% by 
improving, correspondingly, the controllability and 
observability of the circuit. 
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Table.1 Example of the functional test for 32-bit multiplier 

Decimal representation Binary represetation 
А B A B 

1373907781 127562156 01010001111001000010101101000101 01001100000010000111000010111001 

-254785975 
1630710233 
1373907165 
13649481 
67977233 
122962474 
1376166070 
92684874 
26034540 

376343075 
579247396 
1277006115 
1382976035 
70853037 
458015755 
419570069 
1309303734 
646202154 

11110000110100000100011001001001 
01100001001100101010100111011001 
01010001111001000010100011011101 
00000000110100000100011001001001 
00000100000011010100000000010001 
00000111010101000100001000101010 
01010010000001101010000010110110 
00000101100001100100001001001010 
00000001100011010100000101101100 

00010110011011101000101000100011 
00100010100001101001110100100100 
01001100000111011001000100100011 
01010010011011101000101000100011 
00000100001110010010000110101101 
00011011010011001100010000001011 
00011001000000100010000110010101 
01001110000010100110001110110110 
00100110100001000100001100101010 
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