
 1

Evolutionary approach to the functional test generation for digital circuits

Y.A.Skobtsov1, D.E.Ivanov2, V.Y.Skobtsov2 ,R.Ubar3,

1Department of Automated Control Systems, DNTU, Artema Str. 58, 83000 Donetsk, Ukraine,
skobtsov@kita.dongu.donetsk.ua

2Institute of Applied Mathematics and Mechanics of NAS of Ukraine,
R.Luxemburg Str. 74, 83114 Donetsk, Ukraine

{ivanov, skobtsov}@iamm.ac.donetsk.ua
Computer Engineering Department, TTU, Raja 15, 12618 Tallinn, Estonia

raiub@pld.ttu.ee

Abstract

In the paper an evolutionary approach for functional
testing of digital circuits is considered. A genetic
algorithm for testing digital multiplier is proposed. The
main target of the proposed method is to generate as
short as possible functional test wih as high as possible
fault coverage with the goal to use the generated patterns
as the input data for embedded functional BIST.
Experimental data of the program realization is also
represented.

1. Introduction
During the last thirty years of XX century, the ideas of
evolution theory, self-organization and genetics
developed for biological systems, were extended to the
technical systems, hardware and software. The new
direction in the theory and practice of artificial
intelligence, called evolutionary computations, rapidly
progresses now. The term evolutionary computations is
applied to determination of the search, optimization or
learning algorithms based on some formalized principles
of natural evolutionary selection. Evolutionary
computations use various models of the evolutionary
process, which are differed by diverse representations of
solutions and genetic operators. This approach is
successfully applied for digital circuits testing [1,2]. In
the current paper the evolutionary approach to functional
testing of digital circuits is considered.

 Z=X*Y

X

Y
Z

Figure 1: Multiplier

Let us consider functional test generation for the

combinational circuit of multiplier (Fig.1). Suppose that
the operands X, Y and the result Z are integer numbers for
simplicity (additional information about the multiplier
circuit may be introduced). The task consists in functional

test generation of the minimal length desirable. A genetic
algorithm is applied for solving this problem.

2. Genetic algorithm for functional test
generation
Genetic algorithms (GA) are one of the evolutionary
computations paradigms. They are search algorithms
based on the principles, which are similar to the natural
selection principles [3]. GA use a random directional
search to construct (sub)optimal solution of the given
problem. A subset of points (which are potential problem
solutions) is chosen from the search space. This subset is
called a population in terms of the natural selection and
genetics. Each potential solution of the problem –
individual is presented by chromosome – some gene
structure. An arbitrary gene of chromosome takes a value
from some alphabet that encodes the points in the search
space. In the simplest case, an individual can be
represented by binary encoded string (for example
0011101). It makes the GA attractive for solving the
problem of logic circuits test generation, where the
solution is presented as a set of binary patterns or
sequences of binary patterns. A fitness function is
determined on the solution set. It allows to estimate the
closeness of each individual to the optimal solution – the
ability of survival. The genetic search of solution consists
in the simulation of such artificial population evolution.
Creation of new individuals during the population
evolution is based on the reproduction process
simulation. In this case the individuals-solutions involved
in reproduction process are called the parents, contrary
the obtained individuals-solutions are called the
offsprings. In each generation a set of individuals-
solutions is constructed using the parts of individuals-
parents and adding new parts with “good properties”.
Thus the GA effectively uses the information
accumulated during evolution process.

For solving any problem with genetic algorithm, first
of all, we have to define: 1) the form of individual
representation – encoding; 2) genetic operators –
crossover and mutation; 3) fitness function (Fig.2).
Further we shall consider all these factors with reference
to the given problem.

 2

Genetic algorithm

Population,
individual

Genetic
operators

Fitness
function

&

Figure 2

In the following we will consider the definition of all

GA components with the reference to the formulated
problem.

1) A single test pattern consists of two integer
numbers X and Y – the operands of multiplier. Therefore
a decision is represented as two-component vector (X,Y).
On the other hand, we will use binary strings – codes of
the numerical vectors, as decision representation.

2) Two types of genetic operators (crossover and
mutation) are used – arithmetical and binary.

In accordance with arithmetical crossover for two
parents and , a new

individual-offspring

),(aa YX=A),(bb YX=B

A~ is defined as follows

ba XXX **)1(~ αα +−= ,

ba XYY **)1(~ αα +−= ,
where]1;0[∈α .
Since we consider integer operands of multiplier and the
described numerical crossover can generate real numbers,
then we have to round off the generated components of
the vector)~,~(~ YX=A .

Binary crossover is executed according to the classical
scheme represented below in Fig. 3

Figure 3: One-point and two-point binary crossover

operators

At the same time each type of crossover is applied
with its own probability (binary) and c

bP c
nP

(numerical): . Note, that both types of
crossover are used as it is shown in the algorithm
pseudocode (Fig.5).

1=+ c
n

c
b PP

For mutation operators we also use two types –
arithmetical and binary mutation. Arithmetical mutation

for functional testing is implemented as follows. New
individual),(aa YX ′′=′A -«mutant» is obtained from old
individual),(aa YX=A according to expressions

aaa XXX *∆±=′ ,

aaa YYY *∆±=′
where ∆ - is small number. Obtained individual A’ must
be rounded off also.

Binary mutation is implemented in accordance with
the traditional method (Fig.4)

0 1 0 0 1 0 1 1 → 0 1 0 0 0 0 1 1

Figure 4: Binary mutation

At the same time each type of mutation is applied with

its own probability (binary) and m
bP m

nP (numerical):

. 1<<+ c
n

c
b PP

3) At the preliminary stage the test pattern quality is
evaluated in the following way. The number of inverted
bits in the multiplication result is estimated for each bit
inversion in the current test pattern. The experiments
have shown that a test pattern, where any bit inversion
will lead to at least one bit inversion in the multiplication
result, can be always found.

Our goal is now to generate test patterns such that the
bit inversions of input operands produce maximum bit
inversions in the multiplication result (it would be
desirable to have all bit inversions). Thus we can define
the matrix P of dimension , where , if i-
th input bit inversion produces j-th output bit inversion.
The matrix P is defined in the following way. First, all
the matrix cells are zeros. Next, in the selected input
pattern every bit is inverted. The matrix cells are
defined in accordance to the produced bit inversions in
the output pattern. The fitness function is defined as

]2[MN × 1=ijp

ijp

NM

p

h

N

i

M

j
ij

2
)(

2

1 1
∑∑
= ==A .

Further the genetic algorithm of functional test
generation is considered, its pseudocode is represented in
Fig. 5. The test generation of single patterns is executed
in AddBestInputToTest()function. After the
next iteration of new population generation an input test
sequence is changed. If appending the best individual of
the population leads to increasing test sequence fitness-
function, then it is included to test.

The main target of the proposed method is to generate
as short as possible functional test wih as high as possible
fault coverage with the goal to use the generated patterns
as the input data for embedded functional BIST [5]. The
final fault coverage of the BIST can be increased to 100%
by improving the controllability and observability of the
circuit.

 3

GA(PopulationSize,MaxIteration)
{
 // Prepare start population
 GenerateStartPopulation(PopulationSize);
 PopulationNumber=0;
 // Main GA loop starts here
 while(Stop Criterion is not reached)
 {
 NewPosition=0;
 for(int i=0 ; i<PopulationSize ; ++i)
 {
 // Do select scheme here
 DoSelect(ParentA,ParentB);
 // Do crossingover scheme here

DoCrossingover(ParentA,ParentB,Offspring);
 // Do mutation here
 DoMutation(Offspring);
 // Add new individual
 to intermediate population
 AddToIntermediatePopulation(Offspring,
 NewPosition);
 ++NewPosition;
 }
 ConstructNewPopulation(PopulationSize);
 AddBestInputToTest();
 // increase the population number
 ++PopulationNumber;
 }
 // report the results both screen & file
 DoReport();
} // end GA
DoSelection(ParentA,ParentB)
{
 EvaluateFitness(Population,PopulationSize,
 Fitness);
 DoRouletWheelSelection(ParentA,ParentB,
 Population,PopulationSize,Fitness);
}
DoMutation(Offspring)
{
 // select with small probability – do
 mutation or not
 if(NeedMutation())
 {
 // select the mutation sheme
 SelectMutationSheme();
 if(FuncionalMutation)
 {

 DoFunctionalMutation(Offspring);
 }
 else
 {
 DoBinaryMutation(Offspring);
 }
 }
}
DoCrossingover(ParentA, ParentB, Offspring)
{
 // select the crossingover sheme
 SelectCrossingoverSheme();
 if(FunctionalCrossingover)
 {
 DoFunctionalCrossingover(ParentA,ParentB,
 Offspring);
 }
 else
 {
 DoBinaryCrossingover(ParentA,ParentB,
 Offspring);
 }
}
ConstructNewPopulation(PopulationSize)
{
 // construct temporary population
 CombinePopulations(Population,
 IntermediatePopulation);
 // sort temporary population in ascending
 value of fitness
 SortCombinedPopulationByFitness();
 // select as next population top of
 temporary population
 CopyTopOfPopylation(PopulationSize);
}

DoFunctionalMutation(Offspring)
{
 SelectSmallDelta();
 Offspring=Offspring±Delta*Offspring;
}
DoFunctionalCrossingover(ParentA,ParentB,
Offspring)
{
 SelectSmallAlpha();
 Offspring =(1-Alpha)*ParentA+Alpha*ParentB;
}

Figure 5: GA pseudocode

3. Experimental results
The suggested algorithm was implemented in C++

language in C++ Builder environment. Experimentally
there were defined the values of crossover and mutation
probabilities and , coefficients 8.0=cP 01.0=mP

5.0=α and for functional crossingover and
mutation accordingly, the individuals number in
population – 100. Under these conditions the dependence
of test fitness-function (fault coverage) from generations
number was investigated. The experimental data in Fig. 6
show that fitness-function value is stabilized enough
quickly. Hence the boundary value of GA generations
number is chosen equal to 40.

5.0=∆

0,8

0,6

0,4

0,2

0

46 55 64 73 10 19 28 37 82 911 100

Generation

Fi
tn

es
s

Fig.6. Growth of fitness-function value
depending on generation number

 4

0,66
0,67
0,68
0,69
0,7

0,71
0,72

8 16 24 32

Operand bit capacity

Fa
ul

t c
ov

er
ag

e

a)

0
2
4
6
8

10

8 16 24 32

Operand bit capacity

Te
st

 le
ng

th

b)

Fig.7. Dependence of test fault coverage and test length
from operand bit capacity.

Then the results of the experiments to show the

dependence of test fault coverage and test length on the
operand bit capacity are shown in Fig.7. Average results
of 10 experiments are cited. In Table 1, an example of the
functional test for the 32-bit multiplier is presented,
which consists of 11 patterns..

4. Conclusion

The test generation for 32-bit multiplier, in
accordance with considered approach, shows that
functional tests with 70% coverage relatively to primary
input bits inverting were generated enough quickly. The

test length is equal to 10 patterns for 32 primary inputs.
Thus an evolutionary approach to functional test
generation, at the example of multiplier, was investigated
and proposed.

The main target of the proposed method is to generate
as short as possible functional test to reduce the amount
of input data for embedded functional BIST. The final
fault coverage of the BIST can be increased to 100% by
improving, correspondingly, the controllability and
observability of the circuit.

Acknowledgements. This work has been supported by
EU V Framework projects REASON and EVIKINGS, as
well as by the Estonian Science Foundation grants 5649
and 5910

References
[1] P. Prinetto, M. Rebaudengo, M. Sonza Reorda, "An

Automatic Test Pattern Generator for Large
Sequential Circuits based on Genetic Algorithms" In
Proc. Int. Test Conf., 1994, pp. 240-249.

[2] E.M. Rudnick, J.H. Patel, G.S. Greenstein,
T.M.Niermann, "Sequential Circuit Test Generation
in a Genetic Algorithm Framework". In Proc. Design
Automation Conf., 1994, pp.40-45.

[3] D.E. Goldberg, Genetic Algorithms in Search,
Optimization & Machine Learning. Addison-Wesley
Publishing Company, Inc., 1989.

[4] M.Abramovici, M.A.Breuer, A.D.Friedman, Digital
systems testing and testable design. IEEE Press Inc.,
New York.

[5] R.Ubar, N.Mazurova, J.Smahtina, E.Orasson, J.Raik.
HyFBIST: Hybrid functional built-in self-test in
microprogrammed data-paths of digital systems

Table.1 Example of the functional test for 32-bit multiplier

Decimal representation Binary represetation
А B A B

1373907781 127562156 01010001111001000010101101000101 01001100000010000111000010111001

-254785975
1630710233
1373907165
13649481
67977233
122962474
1376166070
92684874
26034540

376343075
579247396
1277006115
1382976035
70853037
458015755
419570069
1309303734
646202154

11110000110100000100011001001001
01100001001100101010100111011001
01010001111001000010100011011101
00000000110100000100011001001001
00000100000011010100000000010001
00000111010101000100001000101010
01010010000001101010000010110110
00000101100001100100001001001010
00000001100011010100000101101100

00010110011011101000101000100011
00100010100001101001110100100100
01001100000111011001000100100011
01010010011011101000101000100011
00000100001110010010000110101101
00011011010011001100010000001011
00011001000000100010000110010101
01001110000010100110001110110110
00100110100001000100001100101010

	Abstract
	References

