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Self-Consistent Desecription of the Effeet of Point Defects
on Spectrum and Dynamic Deceleration of Dislocations

By
V. V. MavasaeNko, V. L. SosoLEV, and B. I. Knvnik

A self-consistent equation of dislocation motion in elastic fields created by defects iz obtained.
The deceleration foree value is calculated due to defect collisions and it is shown to have a quasgi-
viseous character under low velocities.

ITonyueno caMocOrJacOBAHHOE YpaBHeHHEe IBH:KeHHSA ANCIOKALMH B YOPYTUX NOJAX,
CO3JaHHBIX gedenTaMu. Bridmenena BelHMHHA CHIIBI TOPMOYHEHHA 34 CYET CTOJIKOHO-
BEHUA ¢ JefeERTaMHE M [0Kas3aHo, 4TO IPH HHSKMX CKOPOCTAX OHA MMeeT KEASWBABKIIL
XapaKTep. '

1. Introduction

To study dynamic deceleration of dislocations in a medium containing point defects
the Granato-Liicke model is commonly used, i.e. a dislocation is treated as a string
whose vibrational spectrum is described by a linear dispersion law [1 to 4]. The effect
of point defects on the dislocation vibrational spectrum is usually not taken into ac-
count. In this case the deceleration force of the dislocation varies inversely as disloca-
tion velocity and depends linearly on the concentration of defects and is quadratic
over the misfit parameter. The available experiment does not, however, conform these
dependences. Thus, the force of dislocation deceleration by defects in copper found in
[5] depends linearly on the velocity and the misfit parameter and is proportional to the
square root of the defect concentration.

In the dynamic region of velocities the dislocation executes an overbarrier slip, i.e.
its kinetic energy is greater than the energy of the interaction with the defects. But
still in this region the character of overcoming the local fields of the defect may be dif-
ferent for different velocity intervals. Let the dislocation move with mean velocity .
We denote the radius of the defect by a, the velocity of transverse sound by ¢, the
mean distance between defects by I — n—1/%, where n denotes the concentration. If the
dislocation moves with a velocity at which the dislocation-defects interaction time is
less than the time of perturbation propagation along the dislocation at distance I,
i.e. (a/v) << l[c;, then defects interact with the dislocation independently and the dis-
location overcomes them in turn. Otherwise (/v > l[c,) the dislocation interacts with
many defects simultaneously. It is clear that the case of collective interaction between
the defects and the dislocation should differ from that of independent single collisions.
In particular, the velocity dependence of the deceleration force should be different in
these cases (see[2]). The velocity region » >>c,a/l was studied in [2to4]. As was stated
above, in this region the deceleration force is proportional to »~1.

In this paper an attempt has been done to study the velocity regions where the inter-
action of defects with the dislocation is of collective character.
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2. Disloeation Yibrational Speetrum

Let us consider an infinite edge dislocation moving in a field of randomly distributed
defects under uniform constant external stress g,. In the stationary case when the ex-
ternal force F ~ bag, is balanced by the defect deceleration force, the dislocation, as
a unit, is moving with a constant velocity, but separate dislocation segments vibrate
around the dislocation ‘‘centre-of-mass” position when it overcomes the inhomogeneous
field created by the defects. Let the 0Z-axis go along the dislocation line and the 0.X-
axis be parallel with the Burgers vector b. Also, let the dislocation move in positive
direction of the 0 X-axis and vibrate in the slip plane Z0X. Vibrations in the plane per-
pendicular to the slip plane are not taken into account in this problem. The position of
dislocations in the slip plane is described by the function x(z, t) = vt + w(z, t), where
w(z, t) is a random quantity, its mean value over the ensemble of defects and the posi-
tion of dislocation elements 1s zero,

{z(z, 1)) = ok, {w(z, Tyi=tn

In this notation the equation of dislocation motion in the field of randomly distri-
buted defects iz of the form

02z da o2z (d)
m (Eﬁ + 0 i c? @) = bo, + boyy, (vt + w, 0, 2) . (1)

Here ¢(0) is the component of the tensor of stresses created by the defect on the dis-
location line, o{d) = ¥ oy, m is the mass of the dislocation length unit, N the number

of defects in the erystal. Infinitely small damping 6 is formally introduced to provide
convergence of the appearing integrals. Change over to the coordinate system relating
to a moving dislocation. Then

W b {d)

:E G'.?:y{ﬂt + i, E’, E} . {2}

a%w dw s O
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Considering dislocation vibrations to be small, we expand the £ unction of) (later on
referred to as ¢) in terms of w(z, f) up to the second order. We approximately replace
L " wy (2, t) wy(z, t) (indices 1, 2 are introduced to distinguish w(z, t)) for

L (o' wy) wy + (6"wy) wy} = {g"w) w,

where (...) denotes averaging over dislocation length and ensemble of defects by the
Poisson distribution

X2
: *dz [ X dr ‘
{1-1-!} = },ir:;: .[ ? f EEI]- TI}'TT:; . {1]‘}
S

In this expression #, is the radius-vector of the i-th defect, V the volume of the erystal,
f the dislocation length. Such a procedure means that the nonlinear interaction of the
dislocation with defects is replaced by the dislocation interaction with the self-consist-
ent field (¢’"w) which in some sense is analogous to a self-consistent field in the Vlasov
kinetic equation for a plasma or to the Hartree self-consistent procedure for the cal-
culation of wave functions of many-particle problems in quantum mechanics.

Note that the summand (g’w) does not contribute to the renormalization of the dis-
location vibrational spectrum and will be treated later on only in connection with the
calculation of the dislocation force acting on the dislocation.
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1f the dislocation centre moves with a constant velocity and the impurities are dis-
tributed by the Poisson law, then it is easy to show that the quantity (¢"'w) does not
depend neither on time nor on the coordinate. For this reason we transpose the sum-

mand %(u”w} win (2) to the left-hand side. We obtain a linear equation the right-

hand side of which is, after the Fourier transformation, of the form
: b
(—w? — i + dig® + 4%) w(g, ) = - 0g(0) . (4)

Here we denote
A% =— {a"'w) g=p (D)
m i v

7,40(0) is the Fourier component of stresses from defects on the line of the uniformly
moving dislocation. From (4) it is seen that the account of the self-consistent field due
to collisions with defects results in the appearance of activation in the vibrational
spectrum at ¢ = 0, o = /. Solving (4) we have

b
w(g, w) = G(g, ) — 0gl0) o
where
G(g, w) = (—0? — o + dg® + 4% (7)

is the Fourier component of the Green function of (4). Now substituting (6) and (7)
into (5) and averaging according to (3) we obtain a self-consistent equation to determine
the energy gap in the dislocation vibrational spectrum,

]

2 — nb? a3 _ Palopl® = (8)
(2m)* m? cigt + 4% — po*

in this formula ¢, is the Fourier component of the stresses o.y(1) created by a single
defect. From (8) it is seen that A2 does not depend on time and coordinate. This is
a consequence of the homogeneity of motion and the isotropy of space due to averaging,

3. Dynamic Deceleration of Dislocation

Now we study the question on the influence of the gap in the dislocation vibrational
spectrum on the form of the dependence of deceleration force F' created by defects on
the velocity. Using the Peach-Koehler formula we present the deceleration force in the
form

b : R v :
I = Eﬁ;ﬁi f d‘ap dr_"_} ﬂ'p {ETIJ.*:M'{Z_- t) fp> E!pﬂ!l—.!jl;i—twi’ ; Lg}

where f, = 3 exp (ipr;), summation is performed over the positions of the defects.
k

Expanding the expression for the deceleration force in terms of small vibrations and
taking account of the fact that terms linearly containing a random quantity vanish
after averaging, we obtain

F = —b{cg'(vf) w) = —

(2_1:]4 J‘ dd_'p d:'-'J ﬂpﬁ}' l.:i:ﬂr!'r—:'i:ng—rlwlf <'I"”.|Fj'.l} : {1{_]:]



Next we study 1

ﬂ'ﬂf[i’) = ﬂ"p

Let % denote the charaﬂtemstm wave vector of 1‘-113 Hh:
First consider the case v > A/x. Here the wave vectors of the
contributors to (12). Then we can approximately write

o0 o0

Pho A J i, J' dp. ps |0(Pss By O)]2.

— 0o 0

An analogous expression is obtained for the Fourier transforms dwergent- a
x is taken as the cut-off parameter of the integration over the wave vectors. Fornruh
(13) is in agreement with the results of [2 to 4] obtained for dislocations moving
with high velocities. Thus, in the region of high dislocation velocities (v > 4/x) the
presence of a gap in the vibrational spectrum does not influence the dependence of the
deceleration force on velocity. To study the velocity region v < A/x we ¢1"91)1&::@ the
variables in the integral (12),
s nb2,18 ” alyReish Lof AR % )
| B (55 @ + ). (14)
-0 1

From (14) it follows that in this region the influence of the gap turns out to be essential,
the form of the force-velocity dependence being determined by the form of the Fourier

transform of the tensor of stresses created by the defect, and because it is impossible

to find the F(v) dependence in the general form we consider a number of simple model
functions of g.,(p).

(1) oay(P) = oypapyB(® — p2).

Here 6(x) is the Heaviside function, The deceleration force is equal to zero at v << Afx,
and at » > /fx it depends on v in the following way:

F vl — 22

The force has a maximum at v =~ 21/x and at » > A/x it behaves as v,
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(ii) The Fourier transform of Gaussian type

Oxy(P) = OoPapy ™" T
In this case
A e T g
nhix (7} 6 ( )
mﬁt_'f}

F=—
At v — 0 the deceleration force F — 0, at v = 2//x it has a maximum and at v > Afx
decreases as v,

(iii) Defects of the dilatation centre type. To eliminate the nonphysical divergence,
let us introduce a cut-off for the defect field at the distance of the defect radius,

gl — et

Ox dy e

02(r) = pible

Here w 1s the shear modulus, & the misfit parameter, the dimensionless value characte-
rizing the power of the defect (see [4]). The Fourier transform of the stress-tensor com-
ponent needed is of the form

(LS
op = dmubdexn® T _:‘_’ )
In this case the deceleration force is determined by the formula
F = — Bpw®(A[(xv)) ,
where
i e b0 et
B{i B 3m.f'-t£]2 ] {15]
D(x) = 21 + (62* + 22) In (1 + =) — 627]. (16)

Here n, is the dimensionless concentration of defects, n, =~ nb® (see [4]). At velocities
» 3>, = Afx the function @(x) ~a* and the deceleration force is proportional to v~!
which is in agreement with the results of [2 to 4]. At v << v, the function @(x) = 1 and
deceleration is of quasi-viscous character,

F=—Bv. (17)

The obtained dependence of the deceleration force on dislocation velocity (F ~ v at
small velocities and F' ~ »~! at high ones) agrees with the results of [6],

Basing on the above calculations we can conelude that at p > » the behaviour of the
Fourier transform of the tensor of the stresses created by the defect determines the
dependence of the deceleration force on velocity at v < v,. If at p > @ og(p) = 0,
then at v < v, ' = 0. If at p > x o,y(p) exponentially decreases, then at v < v, F is
exponentially small. Finally, if ¢,,(p) decreases in a power-type manner, then the
dependence of F on » will be of power type as well.

As was shown above, at the velocities » > v, the presence of the gap does not in-
fluence the deceleration force, but at small velocities its influence becomes essential.
Thus, it is necessary to calculate the gap value in the region v < Afx. First of all we
pass to spherical coordinates in the integral (8)

p: = p sin ¢ cos @; Py = p sin ¥ sin @; P, = cos ¥ x = cos ¥ .
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Integrating over the angle ¢ we transform (8) to the form

2 3
1 App)1=at L4 A5
1 = AL s da a2 dp pf2(p?) _{I 8 ( ﬂ) v mﬂ}}
dm2m2eih S pu\2 IR
0 0 e (j) (I — &%)
2 ¢ 3 fegp\®
T f dp p*f*(p*) [1 A5 77 (7) ] : (18)
L]

In the case of a defect of centre-of-dilatation type,

_ Aaubtext

- R

We consider A<Z xc;. This means that the gap is less than the Debye frequency, as

regards its order of magnitude, because wp ~ cb™* ~ ¢yx. So, uv <€ A<Z ney. In this
case (18) becomes simpler,

f(p*)

1 — nge? (%)3 In (Afxv) . (19)

Here we have also used the approximate evaluation of the mass of the dislocation unit
length m ~ gb®. A solution of this equation exists only for v < v, where

'E.’]_ —_ Ct_{ﬂ'ﬂfz}l'fs {2{}}
and in rough approximation it has the form
A = xv In (v,fv). (21)

Because the mean distance between defects I ~ bng /%, then v, ~ ¢;b/l which isin agree-
ment with the conclusions of-the authors [2]. The condition » > »; will be rewritten in
the form (I/¢,) > (a/v). As was mentioned above, this means predominance of single
interactions of defects with the dislocation, The condition » < v suggests predomi-
nance of collective interaction, resulting in the appearance of the gap essentially chang-
ing the character of dislocation deceleration. The above model is valid in the dynamic #
region of velocities, i.e. when the dislocation kinetic energy is greater than the energy
of dislocation interaction with the impurities £Uzb~n,, where U, is the energy of dis-
location bonding to the impurity atom. According to [4], for the centre of dilatation
U, ~ ub*. Making use of this expression m =~ gb?* = ub%e;” for the evaluation of the
dislocation mass we obtain the applicability condition for our model in the form
v > cy(nye) /2. Thus, the force of dislocation deceleration at defects is of quasi-viscous
character in the velocity region

cy(mge) 2 < v < cy(nee?)'?

and is proportional to v~ in the region cy(nge?)!* < v <& ¢,. The concentration of defects
is usually within the limits 10-% to 10-3 and & ~ 107%. For n, = 10~ the gap value is
A ~ 10% 51, In this case the damping constant By ~ 10-% kg/m s which is in order-
of-magnitude agreement with data of [5]. From (21), (20), and (15) it follows that the
constant B, is proportional to n}/%®, The gap value A ~ (¢yf1) ~ wpbfl, i.e. wp > 4.



Effect of Point Defects on Spectrum and Dynamic Deceleration of Dislocations 431

4. Conelusion

It has been shown that the collective interaction of defects with a dislocation results in
the appearance of a gap in the dislocation vibrational spectrum and the presence of the
gap essentially changes the velocity dependence of the deceleration force, in particular,
it results in the initiation of the experimentally observed quasi-viscous deceleration
by defects.

References

[1] B.J. Atsarrz and V. L. INpExsoom, Uspekhi fiz. Nauk 115, 3 (1975).
[2] A. Ooxawa and K. Jovzu, J. Phys. Soc. Japan 18 (Suppl. 1), 36 (1963).
[3] R. B. Scewarz, Phys. Rev. B 21, 5617 (1980).

[4] V. D. Narsik and K. A. CHErsuko, Crystal Res. Technol. 19, 763 (1984).
[5] T. KaxEDA, J. Phys. Soe. Japan 28, 1205 (1970).

[6] A. M. Kosevica and V. D. NaTsIk, Fiz. tverd. Tela 8, 1250 (1966).

( Received May 26, 1987)

23 physica (b) 143/(2



