2. Установки з псевдо зрідженим шаром можна використовувати для утилізації металів з промивних вод, які мають невелику концентрацію.

Подальші дослідження в даному напрямку, в нашому розумінні, повинні бути направлені на створення математичного апарату забезпечення технологічного процесу та його регулювання в залежності від параметрів водного розчину з метою отримання щільних осадів і повторного використання водного розчину.

Бібліографічний список

- 1. Гибкие автоматизированые гальванические линии. Справочник. Под общей редакцией В.Л. Зубченко, -М. -Машиностроение. -1989г. -С.145-148
- 2. **Коваленко** Д.Г. Современное состояние и перспективы развития гальванопроизводства, создание малоотходных, зкологически чистых производств // Перспективная технология производства РЭА. Л.,-1991. №3 -C.3.
- 3. **Корчик Н.М** Методы обработки технологических растворов и электролитов производств гальнанических покрытий и печатних плат/ Н.М. Корчик, В.М. Рогов. Т Ф. Степанюк //Тез.докл. межотрасл. научно-техн. семинара. -М. 1991. С. 30-32.

© Нестер А.А. Романішина О.В. 2004

УДК 658.567

ЛИЗАН И.Я., ЧИКУНОВ П.А. Украинская инженерно-педагогическая академия, Артемовск

О ПЕРСПЕКТИВАХ ИСПОЛЬЗОВАНИЯ И ПЕРЕРАБОТКИ ОТХОДОВ УГЛЕДОБЫЧИ И ОБОГАЩЕНИЯ

Безопасность любого государства (экономическая, энерготехнологическая, экологическая и т.д.), в значительной мере зависит от обеспеченности собственными (независимыми) энергетическими и минерально-сырьевыми ресурсами.

Украина, не обладая достаточными запасами нефти и газа, в качестве основы крупномасштабного развития собственной теплоэнергетики может использовать в качестве альтернативного источника сырья только уголь. Поэтому можно с уверенностью говорить, что угольная промышленность является не только основной составной частью топливно-энергетического комплекса Украины, но и той базовой отраслью, которая обеспечивает безопасность государства.

В настоящее время угольная промышленность располагает только подготовленными запасами, которых при добыче 100-130 млн. т. в год (максимальная потребность Украины в настоящее время), хватит на 300 лет.

Однако, несмотря на большие запасы угля, топливно-энергетический комплекс Украины имеет ограниченные возможности быстрого наращивания добычи и производства энергетических ресурсов. Это связано с тем, что ухудшаются горно-геологические условия добычи угля, и как следствие этого, снижаются качественные показатели (зольность, сера, влажность, гранулометрический состав). Действующие шахты нуждаются в реконструкции, обеспечении материалами и оборудованием. Не решен ряд социальных и экологических проблем шахтерских городов.

В связи с этим наблюдается устойчивая тенденция снижения добычи угля, значительный рост себестоимости 1 т угля, и резкое изменение структуры затрат по производству энергетических ресурсов.

Так, в базовом 1990 году в Украине было добыто 164,8 млн. т. угля, в 1997 году - 71,7 млн. т., в 2003 году наблюдался некоторый прирост добычи угля 84,3 млн.т., однако и он «недотянул» до запланированных показателей.

Дефицит топлива обусловил остановку порядка 4 тыс. МВт генерирующих мощностей ТЭЦ, что является причиной ограничения в электроснабжении промышленных предприятий и городов. Следствием чего стало снижение объемов производства, увеличение социальной напряженности и т.д.

В этой связи актуальной задачей имеющей межотраслевое значение, является вовлечение неиспользуемых топливо угольных отходов, образовавшихся в процессе прохождения подготовительных выработок в шахтах и обогащения угля, как альтернативного источника топлива, сырья для производства строительных материалов и попутного извлечения редкоземельных металлов (германия и скандия), а также чистого оксида железа. Так еще в постановлении Кабинета Министров Украины от 28.03.97г. №280 "О ходе структурной перестройки угольной промышленности", была поставлена задача выработки и осуществления согласованных в межотраслевых и межрегиональных масштабах решений и внедрения технологий промышленного использования шламов, улучшения экологической обстановки в угледобывающих регионах, а также предотвращения возможных чрезвычайных ситуаций, связанных с прорывами дамб хвостохранилищ. Конкретизация задач и методов выполнения работ указана в приказе Министра угольной промышленности от 12.05.1997г №186.

В мировой и отечественной практике в больших масштабах утилизируют отходы, как угледобычи, так и углеобогащения. В Украине в настоящее время использование этих отходов, как правило, не связано с разработкой специальных технологических процессов. Они используются для закладки выработанных пространств в шахтах, выравнивания рельефа местности, рекультивация и т.д.

В тоже время многочисленными исследованиями, проведенными зарубежными и отечественными исследователями, установлено, что содержание углерода в отходах менее 15% определяет их, как исходный материал для производства строительных материалов: строительного кирпича, различного вида огнеупорного и шамотного изделия, различного вида керамических труб и плит, дренажных труб, производства цементов и бетонов и т.д. Кроме того, данные отходы могут быть использованы в сельском хозяйстве в качестве носителей микроэлементов или серы в удобрениях, а также в качестве добавок для нейтрализации кислых почв.

Однако при переработке горных масс с содержанием углерода более 15 %, возникает проблема утилизации углеродистого материала. Опыт работы промышленных предприятий, имеющих угольные отходы в качестве основного сырья, показывает, что трудности освоения производства изделий на их основе связаны в основном с наличием в отходах значительного количества органической массы, нередко во много раз превышающего нормативные требования. Поэтому высокоуглеродистые отходы углеобогащения необходимо сжигать в специальных топках с аккумуляцией тепла и использованием его в народном хозяйстве, а уже из минеральных остатков получать строительные материалы (см. рис. 1).

По укрупненным оценкам к настоящему времени в Украине накоплено порядка $150\,$ млн.т шламовых отходов зольностью от $81\,$ до $68\,$ %. Ежегодное поступление шламовых отходов в отвал оценивается около $5\,$ млн.т. Удельная теплота сгорания указанных отходов составляет $1800\text{-}3200\,$ ккал/кг. В качестве топлива также можно использовать часть породы от проходки, зольность которой несколько больше зольности отходов углеобогащения, и состав горючих веществ не очень велик, но удельная теплота сгорания оценивается $1200\text{-}1500\,$ ккал/кг.

Предлагаемое низкосортное угольное топливо не может быть использовано на действующих тепловых электростанциях по причине технологических особенностей существующих пылеугольных котлов. Кроме этого, перевозка низкокалорийного мелкодисперсного по составу топлива нецелесообразна по экономическим и экологическим соображениям.

Эффективное и экологически чистое использование указанных топливо угольных отходов возможно при отказе от протяженных перевозок и применения новых, широко внедряемых в зарубежной практике технологий сжигания топлива в котлах с циркулирующим кипящим слоем (ЦКС).

Для решения этой задачи, мы предлагаем разместить на территории деятельности угольных предприятий, вблизи накопившихся топливо угольных отходов экологически "чистую" теплоэлектроцентраль (ТЭЦ), укомплектованную котлами ЦКС. В этом случаи, электрическая мощность ТЭЦ, в зависимости от количества и качества топлива, а также от потребности электрической и тепловой энергии в рассматриваемом районе, может составлять

72 МВт с выработкой тепловой энергии 150 Гкал в час. При этом ее блочно-модульное исполнение позволяет разместить две такие ТЭЦ.

Как отмечалось ранее, минеральные остатки могут быть использованы и для попутного извлечения редкоземельных металлов. В таблицах 1 и 2 приведены содержание и условная стоимость редкоземельных элементов в отходах угледобычи и обогащения. При таких высоких ценах на указанные металлы, не только их извлечение из угольных отходов, но и сама добыча угля становится рентабельной и экологически безопасной.

На основании изучения проблемы и выполненных лабораторных исследований, мы можем сделать заключение, что отходы углеобогащения представляют собой сырьевую базу для производства высококачественного экологически чистого, конкурентоспособного на мировом рынке бытового топлива, а также источника сырья для получения редкоземельных элементов и строительных материалов.

Но для этого необходимо изучить отходы на обогатимость, разработать патентночистые высокоэффективные технологии обогащения и переработки получаемого угольного концентрата в экологически чистое скованное топливо. Кроме того, необходимо разработать эффективные технологии по производству строительных материалов и извлечения редкоземельных элементов.

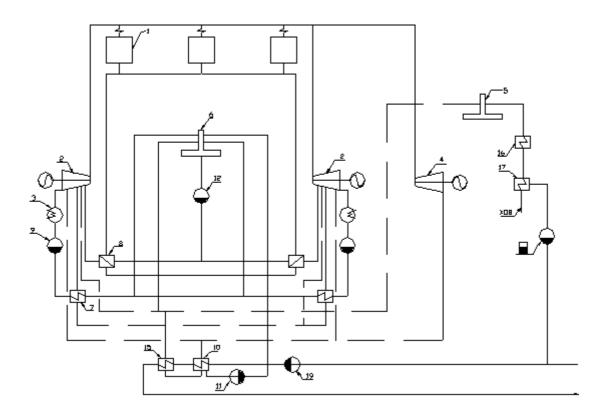


Рис. 1. Схема топливно-турбинного комплекса

Спецификация к схеме 1

Поз	Наименование	Кол.	Тип	Характеристика
1	Котёл	3	Е-120 –3,9-440ЦКС	Д=120 т/ч P=3,9 МПа Т=440 °C
2	Турбина	2	ЛТ-30/35-3,4/0,1	N-25 MBT
3	Конденсатор	2		
4	Турбина	1	3-12-3,4/0,1	N=12 Mbt
5	Деаэратор подпитки т/с	1	ДА-300	Д=300т/ч
6	Деаэратор подпитки котлов	1	Да-300	Д=300т/ч
7	Подогреватель низкого давления	1		
8	Подогреватель высокого давления	1		
9	Конденсатный насос	1		
10	Подогреватель сетевой воды	4		
11	Сливной насос ПСГ	4		
12	Питательный насос	3		
13	Подпиточный насос	1		
14	Насос сырой воды	1		
15	Подогреватель сырой воды	1		
16	Подогреватель ХОВ	1		
17	Охладитель ПВ	1		
18	Насос аварийной подпитки сети	1		
19	Сетевой насос	1		

Табл. 1. Содержание редких элементов в товарных продуктах обогатительной фабрики

	dV йnдonH	10	10	10	10	10	10	10	5	5	3	10	10	10	10	3	3	3	10	10	20
	Бериллий Ве	7	10	3	3	15	3	10	15	10	15	10	2	10	2	2	1,5	2	3	3	2
	Барий Ва	1	-	700	500	-	500	-				-	500		500	-		-	200	700	700
	Висмут Ві	1,5	1,5	1	1	1,5	i	2	2	2	3	2	2	2	2	2	2	1,5	2	2	1,5
	оЭ тапьдоЯ	5	7	10	5	7	5	-	7	7	3	7	7	7	7	5	5	5	10	7	10
	эӘ йинвмдэТ	5	5	3	5	5	5	3	5	5	3	2	3	2	2	1	15	1	3	1,5	1
о угля	хром Ст	15	10	70	30	15	50	10	10	10	10	20	50	20	20	10	20	20	30	30	50
сухог,	іИ апеян	15	20	30	20	15	30	10	15	15	10	15	20	15	20	10	15	10	20	30	30
тонну	М мяфапо В	1	1	1		1	-	-				-	-	-	-	-	1	1	-		3
іах на	ьӘ йиппаТ	5	3	10	10	3	10	3	3	5	3	3	15	3	15	3	10	10	10	10	10
грамл	Марганец Мп	150	200	700	300	100	300	7	300	300	70	150	300	200	300	100	50	150	200	200	700
анпе в	V йидвнв Я	20	15	30	20	20	30	10	15	15	30	30	20	30	20	20	20	20	30	70	100
Содержание в граммах на тонну сухого угля	sA явашыМ	200	1	1	-	ł	-	1	-	1	1	1	200	1	50	200	200	1	50		1
C	iT нвтиТ	700	500	2000	3000	1000	5000	300	1000	1500	200	700	2000	300	2000	300	500	500	1500	3000	3000
	иЭ адэМ	15	10	20	20	15	20	15	15	15	15	20	30	20	30	20	30	20	30	20	30
	Свинец Ър	10	5	20	15	10	20	7	5	5	5	3	20	3	20	5	15	10	15	15	20
	Сурьма Sb	1	1	1		1		-				-	-			-	1	1	-		-
	4 дофооФ	1	1	-	!	1	-	-		-	-	-	500	-	-	-	1	1	1		-
	вН атутЧ	1	-	-		1							-			0,1	0,1	-	-		-
Продукт		к-т ДМ	к-т Г	п/продукт	к-т ДГСШ 0-13	к-т ДГ+13	к-т ГСШ 0-13	к-т Г+13	K-T + 13	к-т 0-100	K-T	K-T	п/продукт	K-T	п/продукт	K-T	п/продукт	K-T	K-T	K-T	K-T
Обогатительная фабрика			Украина		Кураховская		Россия		, and a second	Селидовская	Tomogor and	прасноарменская	Tours acres on I	пролетарская		NOJIOCHEROBCKAN	Чумаковская	Моспинская	Кондратьевская	Углегорская	Советская
п.п ₂И			_		2		3		_	†	V	ر 	7	0	1	`	∞	6	10	11	12

Табл. 2. Условная стоимость элементов-примесей в углях

Элемент	Цена за 1 т. долл.	Цена за 1кг. долл.	Среднее содержание в золе углей, г/т.	Условная стоимость в 1т золы долл.							
Типичные катионогенные элементы-литофилы											
Li	35	0.03	115	3							
Rb	35	0.03	83	2							
Cs	35	0.03	5-15	0.3							
Sr	10	0.01	780	0.02							
Катионо- и анионогенные лифтолы с постоянной валентностью											
Be	100	0.1	16	0.16							
Sc	10000	10	17	170							
Y	240	0.2	42	8.4							
Yb	500	0.5	6	3							
La	100	0.1	30-80	0.3							
Ce	100	0.1	100-200	10							
Ga	500	0.5	43	21							
Ge	300	0.3	14	4							
Катионно- и анионогенные элементы с переменной валентностью											
Ti	0.1	0.01	3600	3							
Zr	10	0.01	210	2							
Hf	100	0.1	1-3	0.1							
Sn	5	0.01	6	0.1							
V	5	0.01	150	1							
Nb	50	0.05	8	0.4							
Ta	200	0.2	0.03	0.5							
Mo	5	0.015	19	0.1							
W	15	0.01	20-40	0.4							
Re	1500	1.5	0,n-n,0	1							
		Элементы-халы	кофилы								
Cu	1	< 0.01	3600	3							
Ag	60	0.01	1.7	0.1							
Au	1000	6	0.02	0.02							
Zn	0.5	1	125	0.01							
Cb	5	< 0.01	5	0.01							
Hg	10	0.01	1-3	0.01							
In	400	0.4	0.08	0.03							
Pb	0.5	< 0.01	110	0.01							
Bi	10	0.01	30-60	0.5							
Sb	3	< 0.01	5-10	0.01							
Se	40	0.04	10-30	0.4							

© Лизан И.Я., Чикунов П.А. 2004