ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ АВТОКОМПЕНСАТОРА ЕМКОСТИ СЕТИ УЧАСТКА ШАХТЫ НА ОСНОВЕ КОНВЕРТОРА ОТРИЦАТЕЛЬНОГО СОПРОТИВЛЕНИЯ

Дубинин М.С., Маренич К.Н., канд. техн. наук, доц. Донецкий национальный технический университет

В настоящее время внедряется новое электрооборудование для управления асинхронными электродвигателями. Это оборудование содержит аппаратуру частотного регулирования на основе ШИМ. преобразователя применении частоты комбинированная сеть, включающая в себя: сеть с промышленной частотой 50Гц, сеть с постоянным током и сети с изменяющейся частотой широком диапазоне. В комбинированных настоящее распределительных сетях участка шахты, В шестижильные кабели типа КГЭБУШВ применяются новые 3*50+3*35. они обладают значительно большей емкостью фазы относительно земли, чем, например, КГЭШ 3*50. С другой стороны в ряде исследований, например в [1], утверждается, что емкостные токи утечки на землю в комбинированных сетях существенно ухудшают электробезопасности счет **УСЛОВИЯ** 3a высокочастотных составляющих емкостных токов утечки.

Данная работа посвящена экспериментальным исследованиям автокомпенсатора емкостных токов утечки на землю на основе конвертора отрицательного сопротивления (КОС) в комбинированных сетях для оценки эффективности его работы.

Для исследований использовалась лаборатория кафедры «Горная электротехника и автоматика им. Р.М.Лейбова». В лаборатории установлен частотный преобразователь фирмы Danfoss мощностью 15 кВт.

Автокомпенсатор содержит следующие основные узлы (рис.1): $\Phi\Pi$ — фильтр присоединения к фазам электрической сети; BK — высоковольтный каскад; KOC — конвертор отрицательного сопротивления; $\mathcal{I} \mathcal{Y}$ — дифференциальный усилитель; цепь положительной обратной связи ΠOC ; Rn — регулятор коэффициента усиления $\mathcal{I} \mathcal{Y}$; $\mathcal{U}\Pi 1$, $\mathcal{U}\Pi 2$ — источники питания устройства.

Фильтр присоединения $\Phi\Pi$ предназначен для присоединения устройства к искусственной нейтрали сети, образованной тремя конденсаторами. Дифференциальный усилитель $\mathcal{Д} Y$ совместно с

цепью ΠOC и регулятором коэффициента усиления Rn представляет собой конвертор отрицательного сопротивления, инвертирующего знак комплексного сопротивления цепи OC с масштабом, заданным потенциометром Rn. Высоковольтный каскад BK предназначен для масштабного преобразования выходного напряжения ΠV в уровень напряжения, соответствующий сетевому (380B, 660B или 1140B).

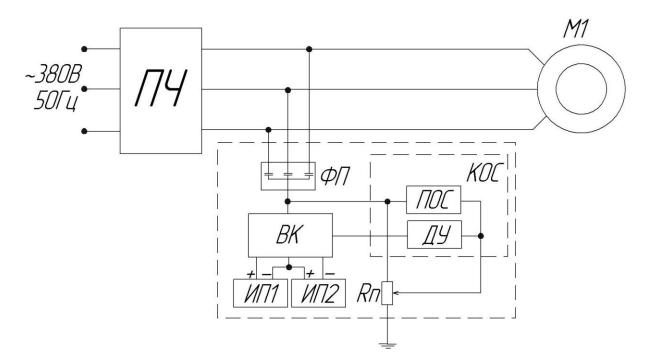


Рисунок 1 — Функциональная схема устройства автокомпенсации емкостных составляющих токов утечки в отходящем от ПЧ присоединении

Приемлемой структурой автокомпенсатора, является двухполюсник, обладающий емкостной проводимостью, взятой с обратным знаком. Это требование выполняется при использовании в качестве цепи *ПОС* конденсатора. В этом случае проводимость устройства вычитается из эквивалентной емкостной проводимости сети относительно земли, уменьшая ее и, соответственно емкостную составляющую тока утечки на землю.

Принципиальная схема конвертора отрицательного сопротивления *КОС*, адаптированная к условиям эксплуатации в составе автокомпенсатора емкостных токов утечки на землю в комбинированном электротехническом комплексе, представлена на рис.2 [2].

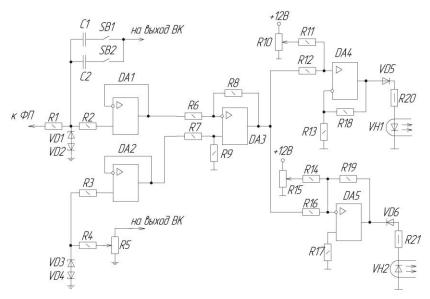


Рисунок 2 – Принципиальная схема конвертора отрицательного сопротивления

буферных состоит ИЗ каскадов, выполненных операционных усилителях DA1 и DA2 соответственно образующих инвертирующий неинвертирующий И вход дифференциального усилителя $\mathcal{I}\mathcal{Y}$. Супрессоры VD1-VD3 предназначены для защиты этих входов от перегрузки по напряжению. Операционный усилитель DA3 обеспечивает необходимый коэффициент усиления сквозного канала DУ. Операционные усилители DА4 и DА5 обеспечивают необходимое постоянное смещение рабочих токов оптронов VH1 и VH2 для линеаризации их характеристик. Оптроны VH1 и VH2 предназначены гальванической развязки высоковольтных транзисторов VT1 и VT2 (рис.3) от низковольтного выхода $\mathcal{I} \mathcal{Y}$ и задания начального тока смещения этих транзисторов.

Согласование функционирования КОС с параметрами силовой сети может быть достигнуто на основе применения высоковольтного каскада. Его принципиальная схема приведена на рис.4.3.

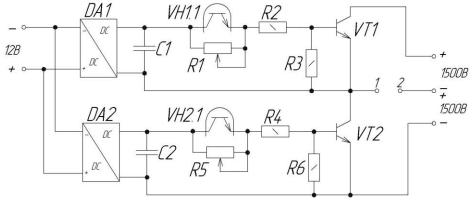


Рисунок 3 – Принципиальная схема высоковольтного каскада

Высоковольтный собой двухтактный представляет каскад усилитель мощности, выполненный на высоковольтных транзисторах VT1 и VT2, работающего в режиме AB. Режим AB достигается установлением начальных токов базы транзисторов при помощи подстройки величины сопротивления переменных резисторов R1 и R2 Питание [3]. базовых цепей транзисторов осуществляют гальванически развязанные DC/DC преобразователи постоянного напряжения. Транзисторы VH1.1 и VH2.1 являются выходными ответными частями оптронов и осуществляют изменение базовых токов выходных транзисторов в соответствии с входными сигналами DУ. Источники питания DП1 и DП2 имеют идентичные параметры и обеспечивают питание выходного двухтактного каскада усилителя мощности.

В процессе экспериментов обрабатывались результаты измерения однофазного тока утечки, который оценивался по величине напряжения измерительного резистора сопротивлением 1 кОм.

Для проверки экспериментальных данных применялся статистический метод обработки результатов измерения с использованием критерия Уилкоксона [4].

Результаты обрабатывались при помощи программного обеспечения MathCAD и Oscilloscope 2.5. Результирующий ток утечки подсчитывался по формуле:

$$I_{ym} = \sqrt{\frac{1}{n} \times \sum_{i=1000}^{n} (U_i)^2} / R_{yT};$$
 (1)

Экспериментальные результаты сведены в таблицу 1. Таблица 1 – Сопоставления действующих значений однофазных токов утечки без компенсатора и с компенсатором (несущая частота 1000 Гц)

Емкость сети на фазу, после преобразователя,	Действующее значение тока утечки, мА, при частоте преобразователя, Гц					
мкФ	Без компенсатора			С компенсатором		
	10	15	20	10	15	20
0.001	68	69	67	31	31	28
0.01	135	130	130	42	43	40
0.1	142	141	141	49	50	48
0.2	141	137	138	51	50	49

Из таблицы 1 следует, что применение автокомпенсатора позволяет эффективно снижать кратковременный ток утечки за счет снижения емкостной составляющей.

Использование разработанного автокомпенсатора обеспечивает эффективное снижение емкостной составляющей тока утечки электротехнического комплекса до безопасного уровня [5].

Направление дальнейших исследований целесообразно проводить в направлении компенсации полного тока утечки на землю.

Перечень ссылок.

- 1. Товстик Ю.В., Савицький В.Н. Проблемы защиты от утечек тока на землю распределительных сетей угольных шахт, с силовыми полупроводниковыми элементами// Гірнича електротехніка та автоматика.: Наук. техн. зб. − 2005. Вип.. №74.-с.36-42.
- 2. Марше Ж. Операционные усилители и их применение. Пер.с франц. Л., "Энергия", 1974.-216 с.
- 3. Keith H. Sueker, Power Electronics Design A Practitioner's Guide. 2005, 250p.
- 4. Бронштейн И.Н. Справочник по математике для инженеров и учащихся втузов. / И.Н. Бронштейн, К.А. Семендяев // 13-е изд. М.: Наука, Гл. ред. физ.-мат. лит., 1986. 544 с.
- 5. ГОСТ 22929-78 "Аппараты защиты от токов утечки рудничные для сетей напряжением до $1200\,\mathrm{B}$ "