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NUMERICAL ANALYSIS OF HIGHER-ORDER 

SINGULARITIES IN COMPLEX CHEMICAL PROCESS 
MODELS 

 
In this contribution, a tool is presented that allows the continuation of singularities of 

higher codimension also for complex chemical process models. The tool is an extension of the 
process-modeling tool ProMoT. It allows creating analytically augmented systems for singularity 
points with currently codimension up to two. Required higher order directional derivatives up to 
the third order are obtained analytically via an interface to the computer algebra system Maxima. 

nonlinear analysis, singularity theory, bifurcation, augmented system 

Introduction 
Chemical production processes often show a strongly nonlinear behavior. 

Understanding, controlling, or even exploiting this behavior can improve the 
productivity and safety of a process. Numerical singularity analysis has become a 
well-established mathematical tool for the nonlinear analysis of process models. 
One objective of singularity analysis is to find the singular point with highest 
possible order, the so-called organizing centre, because in the neighborhood of the 
organizing centre the system shows all possible types of qualitative steady state 
behavior. Therefore, knowledge about the most degenerate points can be 
considered as a full description of the qualitative system dynamics. Nowadays a lot 
of different tools for bifurcation analysis exist, such as AUTO [2], Diva [7] , 
CONTENT [9], LOCA [11], etc. But these tools only offer continuation methods for 
low order singularities such as limit points and cusps. In literature also some tools 
can be found, which allow to find singular points of higher order, for example in 
[3,6] However, these tools are applicable only to systems of low order and low 
complexity.  

In this contribution the development of a new general-purpose singularity 
analysis tool is reported.  It is applicable to complex chemical engineering process 
models, and allows automatic generation of augmented systems for degenerate 
singularities. The user is able to use this tool without detailed knowledge of 
singularity theory, and without having to change his or her model. 



The tool is based on the process-modeling tool ProMoT [4] that serves as a 
model generation engine. ProMoT is used to create models and to generate 
compilable source code of the model and of additional equations defining the 
singularity conditions. The required symbolic derivatives are obtained via a link to 
the computer algebra system Maxima.  

Some basic facts from singularity theory are stated in the second section of 
this contribution. The third section describes the predictor-corrector continuation 
methods that are used for computing the solution manifolds of the nonlinear 
systems. The last two sections treat the implementation of the tool and the 
application of the singularity theory approach to a fuel cell model. 

 
Some facts from singularity theory 

 
Singular analysis of a system 0),( xF  ( NN RRRF : , NRx , R ) allows 

finding the most degenerate point in the parameter space. In neighborhood of such 
a point, all possible types qualitative nonlinear behavior can be found. In this 
sense, the most degenerate singular point gives a global description of the 
qualitative system dynamics.  
 
 
 
 
 
 
 

 

Figure 1– Normal forms hierarchy 
 

Singularity analysis can be done with the help of the Lyapunov-Schmidt 
reduction as described in a book by Golubitsky and Schaeffer [5]. The Lyapunov-
Schmidt reduction allows to reduce a model to a low-order system having locally 
the same qualitative behavior. For each type of bifurcation, there exists a simplest 
representative form, the so-called normal form that is equivalent to a whole class 
of bifurcation problems. An example for a hierarchy of normal forms is presented 
in figure 1. It shows singularities with codimension up to 3, such as limit point, 
hysteresis, isola, pitchfork, etc. Derivatives of the normal form g on the edges of 
the graph are singularity conditions, which have to be satisfied for the given type 
of singularity. Because of the degeneracy of the singularity points, the computation 
of such points cannot be performed directly. Instead, augmented systems of 
equations have to be created, so that singular points of a special type are regular 
solutions of these systems. In this work, the regularization proposed by Kunkel [8] 
is used, which leads to a system of 23 N  equations for a limit point, where N  is the 
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order of the original system. Increasing the codimension of a singular point by one 
also requires the solution of one additional equation. 

 
Numerical continuation method 

 
For tracking solutions of underdetermined systems of the form 0),( xF  

predictor-corrector continuation method can be used. Such a system is obtained 
from an implicit dynamical system 0),,( xxG   ( NNN RRRRG : , NRx ) under the 
steady state condition 0x . The main continuation step consists of two substeps  
the corrector step and the predictor step. Below, for the extended state vector },{ x  
the notation y  is used. 

 
Predictor step 
Two approaches are used for the predictor step: the chord predictor and the 

tangent predictor (see figure 2). The chord predictor is an extrapolation of two 
previously computed points of the solution curve, so on step k  predictor vector kT  
will be 1 kkk yyT . The tangent predictor can be obtained by solving the linear 
algebraic problem nkyk eyFT  1)( , where ne  is a unit vector with one in the n th 
position. 
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Figure 2 – Chord and tangent predictors 

After normalization of the predictor vector kT , the initial point 1ky for the 
corrector step will be equal to kk Ty   with a variable step size  . The step size is 
increased by some predefined factor, if the Gauss-Newton method of the corrector 
step converges and if the amount of Newton iterations is less than a specific 
number. Otherwise the step size is reduced and the step is rejected. 

 

Corrector step 
The Gauss-Newton corrector used to find the exact solution point starting 

from the approximation of the predictor step. To make the underdetermined system 
uniquely solvable a suitable parameterization of the solution curve is required. 
Here local and pseudo-arclength parameterization are used. For the local 
parameterization (see left in figure 3) the additional equation 

1)(  kyyyu  is used, 



i.e. the state variable with index i is not varied in the corrector step. In the case of 
pseudo-arclength parameterization, the corrector tries to find the exact solution on 
a hyper-surface orthogonal to the predictor vector kT . This is defined with the help 
of the relation  ),()( kk Tyyyu . 
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Figure 3 – Local and pseudo-arclength parameterizations 

 

Implementation 
 

An implementation of the algorithms described above consists of three main 
steps: the generation of the augmented system of equations in symbolic form, the 
translation of the symbolic equations into compilable code, and the application of 
numerical  continuation methods.  

The original model equations have to be implemented in ProMoT. The 
generation of the augmented systems requires high order derivatives. These are 
obtained using symbolic differentiation methods in the computer algebra system 
Maxima. To this purpose, an interface between ProMoT and Maxima was created. 
A certain disadvantage of symbolic differentiation is currently the big size of 
source code for complex distributed models, which is caused by the unrolling of 
complex loops. However, symbolic differentiation has to be used here instead of 
automatic differentiation, because for the analysis of chemical process models high 
order derivatives in sparse matrix form are needed. To our knowledge, such 
derivatives cannot be provided by automatic differentiation tools like ADIFOR, 
ADOLC, CppAD etc. Furthermore, the Maxima based approach proposed here 
avoids an object oriented overloading of methods, as is used by other tools. This 
significantly increases the calculation speed and decreases the size of allocated 
memory.  

The augmented system of equations is converted by ProMoT into executable 
code with a CAPE-ESO interface that can be used for numerical analysis. The 
numerical continuation methods implemented in this work are based on the 
predictor-corrector algorithms described above. They are realized as a C++ 
continuation class and are applicable to any model with a CAPE-ESO interface. 
The continuation methods make use of the Gauss-Newton method in the numerical 



library PETSc [12] and of the linear solver in UMFPACK [1]. An exchange of the 
linear and nonlinear solvers by other methods is easily possible. 

 
Application example 

 
As an application example of the singularity analysis tool, a spatially 

distributed model of a high temperature fuel cell is considered. The model consists 
of spatially one-dimensional mass, charge and energy balances. Details of the 
model can be found in [10].  After spatial discretization, the model consists of 201 
algebraic and 200 ordinary differential equations.  Figure 4 shows results of a 
bifurcation analysis of the model.  
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Figure 4 –One-parameter continuation of steady states with continuation parameter 

Itot 

Depending on the activation energy of the electrochemical reaction and on 
the temperature dependence of the electrical conductivity, a wealth of nonlinear 
phenomena is found, including hysteresis varieties and isola varieties. The 
singularities are responsible for hot spot formation in the cell. Therefore, the 
results of the nonlinear analysis give important hints on the process operation of a 
high temperature fuel cell. 

 
 
 
 



Conclusions 
 

In this contribution a tool for singularity analysis was developed. The tool is 
an extension of the process modeling tool ProMoT. It is applicable to detailed 
models of chemical processes, including complex plant models of high order and 
spatially distributed models. The tool automatically generates the augmented 
equation systems necessary for the computation of high order singularities using 
symbolic differentiation.  Currently augmented systems for degenerate bifurcation 
up to singularity codimension two can be generated. A numerical continuation tool 
has been developed that proves to solve the augmented systems robustly and 
efficiently. The tool is embedded into the ProMoT/Diana simulation environment 
for the dynamical analysis of chemical engineering plants. It was applied 
successfully to a detailed spatially distributed model of a fuel cell.  
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Численный анализ особенностей высоких коразмерностей в сложных моделях 
химических процессов 
В этой статье рассмотрено приложение теории бифуркаций, которое  представляет собой 
продолжение особенностей высокой коразмерности для сложных моделей химических 
процессов. Для моделирования использовалась система Promot, которая позволяет 
создавать аналитически расширенные системы для точек особенностей. Необходимые 
производные высшего порядка до третьего порядка получены аналитически через 
интерфейс к системе компьютерной алгебры Maxima. 
нелинейный анализ, теория особенностей, бифуркации, расширенная система 
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Чисельний аналіз особливостей високих корозмірністей в складних моделях хімічних 
процесів 
У статті розглянуто  додаток теорії біфуркацій для продовження особливостей високої 
коразмірністі для складних моделей хімічних процесів. Для моделювання 
використовувалася система Promot, яка дозволяє створювати аналітично розширені 
системи для особливих точок. Необхідні похідні вищого порядку до третього порядку 
отримані аналітично через інтерфейс до системи комп'ютерної алгебри Maxima. 
нелінійний аналіз, теорія особливостей, біфуркації, розширена система 
 


