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NUMERICAL ANALYSIS OF HIGHER-ORDER
SINGULARITIES IN COMPLEX CHEMICAL PROCESS
MODELS

In this contribution, a tool is presented that allows the continuation of singularities of
higher codimension also for complex chemical process models. The tool is an extension of the
process-modeling tool ProMoT. It allows creating analytically augmented systems for singularity
points with currently codimension up to two. Required higher order directional derivatives up to
the third order are obtained analytically via an interface to the computer algebra system Maxima.
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Introduction

Chemical production processes often show a strongly nonlinear behavior.
Understanding, controlling, or even exploiting this behavior can improve the
productivity and safety of a process. Numerical singularity analysis has become a
well-established mathematical tool for the nonlinear analysis of process models.
One objective of singularity analysis is to find the singular point with highest
possible order, the so-called organizing centre, because in the neighborhood of the
organizing centre the system shows all possible types of qualitative steady state
behavior. Therefore, knowledge about the most degenerate points can be
considered as a full description of the qualitative system dynamics. Nowadays a lot
of different tools for bifurcation analysis exist, such as AUTO [2], Diva [7] ,
CONTENT [9], LOCA [11], etc. But these tools only offer continuation methods for
low order singularities such as limit points and cusps. In literature also some tools
can be found, which allow to find singular points of higher order, for example in
[3,6] However, these tools are applicable only to systems of low order and low
complexity.

In this contribution the development of a new general-purpose singularity
analysis tool is reported. It is applicable to complex chemical engineering process
models, and allows automatic generation of augmented systems for degenerate
singularities. The user is able to use this tool without detailed knowledge of
singularity theory, and without having to change his or her model.



The tool is based on the process-modeling tool ProMoT [4] that serves as a
model generation engine. ProMoT is used to create models and to generate
compilable source code of the model and of additional equations defining the
singularity conditions. The required symbolic derivatives are obtained via a link to
the computer algebra system Maxima.

Some basic facts from singularity theory are stated in the second section of
this contribution. The third section describes the predictor-corrector continuation
methods that are used for computing the solution manifolds of the nonlinear
systems. The last two sections treat the implementation of the tool and the
application of the singularity theory approach to a fuel cell model.

Some facts from singularity theory

Singular analysis of a systemF(x,A)=0 (F:R"xR—R", xeR", icr) allows
finding the most degenerate point in the parameter space. In neighborhood of such
a point, all possible types qualitative nonlinear behavior can be found. In this
sense, the most degenerate singular point gives a global description of the
qualitative system dynamics.

codimension

x2+ A 0
x}+1 x%+ 1 1
x4+ 2 x® + xA x2+ 2? 2
9: A
X+ 1 x4+ xA x3+ 22 x>+ 24 3

Figure 1- Normal forms hierarchy

Singularity analysis can be done with the help of the Lyapunov-Schmidt
reduction as described in a book by Golubitsky and Schaeffer [5]. The Lyapunov-
Schmidt reduction allows to reduce a model to a low-order system having locally
the same qualitative behavior. For each type of bifurcation, there exists a simplest
representative form, the so-called normal form that is equivalent to a whole class
of bifurcation problems. An example for a hierarchy of normal forms is presented
in figure 1. It shows singularities with codimension up to 3, such as limit point,
hysteresis, isola, pitchfork, etc. Derivatives of the normal form gon the edges of
the graph are singularity conditions, which have to be satisfied for the given type
of singularity. Because of the degeneracy of the singularity points, the computation
of such points cannot be performed directly. Instead, augmented systems of
equations have to be created, so that singular points of a special type are regular
solutions of these systems. In this work, the regularization proposed by Kunkel [§]
is used, which leads to a system of 3n+2 equations for a limit point, where w is the



order of the original system. Increasing the codimension of a singular point by one
also requires the solution of one additional equation.

Numerical continuation method

For tracking solutions of underdetermined systems of the form g, 1)-0
predictor-corrector continuation method can be used. Such a system is obtained
from an implicit dynamical system c(x,5,2)=0 (G:RYxR'xR—R", ieRr”) under the
steady state condition x=0. The main continuation step consists of two substeps —
the corrector step and the predictor step. Below, for the extended state vector {x 1}
the notation y is used.

Predictor step

Two approaches are used for the predictor step: the chord predictor and the
tangent predictor (see figure 2). The chord predictor is an extrapolation of two

previously computed points of the solution curve, so on step « predictor vector 7,
will be 7, =y, -y, ,. The tangent predictor can be obtained by solving the linear
algebraic problem 7,=F (y,)"-¢,, Where ¢, is a unit vector with one in the n®

position.
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Figure 2 — Chord and tangent predictors

After normalization of the predictor vector 7,, the initial pomnt j _ for the
corrector step will be equal to y, +o-7, with a variable step size . The step size is

increased by some predefined factor, if the Gauss-Newton method of the corrector
step converges and if the amount of Newton iterations is less than a specific
number. Otherwise the step size is reduced and the step is rejected.

Corrector step

The Gauss-Newton corrector used to find the exact solution point starting
from the approximation of the predictor step. To make the underdetermined system
uniquely solvable a suitable parameterization of the solution curve is required.
Here local and pseudo-arclength parameterization are used. For the local
parameterization (see left in figure 3) the additional equation ,)=,-,, 1s used,



1.e. the state variable with index ;is not varied in the corrector step. In the case of
pseudo-arclength parameterization, the corrector tries to find the exact solution on
a hyper-surface orthogonal to the predictor vector 7,. This is defined with the help

of the relation ,(,)=(y-,,.7,)-0-

1

Figure 3 — Local and pseudo-arclength parameterizations

Implementation

An implementation of the algorithms described above consists of three main
steps: the generation of the augmented system of equations in symbolic form, the
translation of the symbolic equations into compilable code, and the application of
numerical continuation methods.

The original model equations have to be implemented in ProMoT. The
generation of the augmented systems requires high order derivatives. These are
obtained using symbolic differentiation methods in the computer algebra system
Maxima. To this purpose, an interface between ProMoT and Maxima was created.
A certain disadvantage of symbolic differentiation is currently the big size of
source code for complex distributed models, which is caused by the unrolling of
complex loops. However, symbolic differentiation has to be used here instead of
automatic differentiation, because for the analysis of chemical process models high
order derivatives in sparse matrix form are needed. To our knowledge, such
derivatives cannot be provided by automatic differentiation tools like ADIFOR,
ADOLC, CppAD etc. Furthermore, the Maxima based approach proposed here
avoids an object oriented overloading of methods, as is used by other tools. This
significantly increases the calculation speed and decreases the size of allocated
memory.

The augmented system of equations is converted by ProMoT into executable
code with a CAPE-ESO interface that can be used for numerical analysis. The
numerical continuation methods implemented in this work are based on the
predictor-corrector algorithms described above. They are realized as a C++
continuation class and are applicable to any model with a CAPE-ESO interface.
The continuation methods make use of the Gauss-Newton method in the numerical



library PETSc [12] and of the linear solver in UMFPACK [1]. An exchange of the
linear and nonlinear solvers by other methods is easily possible.

Application example

As an application example of the singularity analysis tool, a spatially
distributed model of a high temperature fuel cell is considered. The model consists
of spatially one-dimensional mass, charge and energy balances. Details of the
model can be found in [10]. After spatial discretization, the model consists of 201
algebraic and 200 ordinary differential equations. Figure 4 shows results of a
bifurcation analysis of the model.
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Figure 4 —One-parameter continuation of steady states with continuation parameter
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Depending on the activation energy of the electrochemical reaction and on
the temperature dependence of the electrical conductivity, a wealth of nonlinear
phenomena is found, including hysteresis varieties and isola varieties. The
singularities are responsible for hot spot formation in the cell. Therefore, the
results of the nonlinear analysis give important hints on the process operation of a
high temperature fuel cell.



Conclusions

In this contribution a tool for singularity analysis was developed. The tool is

an extension of the process modeling tool ProMoT. It is applicable to detailed
models of chemical processes, including complex plant models of high order and
spatially distributed models. The tool automatically generates the augmented
equation systems necessary for the computation of high order singularities using
symbolic differentiation. Currently augmented systems for degenerate bifurcation
up to singularity codimension two can be generated. A numerical continuation tool
has been developed that proves to solve the augmented systems robustly and
efficiently. The tool is embedded into the ProMoT/Diana simulation environment
for the dynamical analysis of chemical engineering plants. It was applied
successfully to a detailed spatially distributed model of a fuel cell.
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UncaeHHbIl aHAIU3 OCOOEHHOCTEH BBICOKHX KOpPa3MepHOCTell B CJOKHBIX MOJeJfX
XMMHMYECKHX MPo1eccoB

B sT0i1 cTathe paccMOTpeHO MPUIIOKEHUE Teopun OudypKaIuii, KOTOpoe MPEACTABISIET CO00M
MIPOJIOJIKEHHE OCOOCHHOCTEH BBICOKOM KOPa3MEpPHOCTH JUISl CIOXKHBIX MOJENIed XUMUYECKHX
npoueccoB. Jlyis MoAenMpoBaHUS HCIOJb30BaNach cucremMa Promot, koTopas MO3BOJISET
co37aBaTh AHAJUTHUYECKHU paCIIMpPEHHbIE CUCTEMbl JUId TO4eK ocoOeHHocTel. HeoOxonumebie
MIPOM3BOJIHbIE BBICUIETO MOPSAAKAa 1O TPETHEro NOpSAAKA IOJyYE€Hbl AHAJIUTUYECKH dYepes
uHTepdeiic Kk cucreMe KOMIbIOTEpHOHN anredpsl Maxima.

HeJIMHEHHBbIH aHAJIN3, TeOPHUsi 0CO0eHHOCTel, Ou(ypKaunu, pacliMpeHHasi CUCTeMa
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YncenbHuii aHai3 0c00IMBOCTEll BUCOKUX KOPO3MipHicTeH B CKIAIHUX MOJeIAX XiMIYHHX
npoiecis

VY craTTi pO3MISIHYTO J0AAaTOK Teopii Oidypkaiiid s MPOJOBXKEHHS OCOOIUBOCTEH BHCOKOL
KOpasMIipHICTI Uil CKIAQAHUX  MOJeled  XiMIYHMX 1npomeciB. o  MozjenroBaHHA
BUKOpPUCTOBYBanacs cucremMa Promot, sika 103BOJISi€E CTBOPIOBATH aHAJIITUYHO PO3LIMPEHI
CUCTeMH JJsi 0coONMBUX TOYOK. HeoOxinHi MOXifHI BHUILIOTO MOPSAKY A0 TPETHOrO MOPSAKY
OTpUMaHi aHAJITHUYHO Yepe3 HTepdelic 10 cucTeMu KOMI'ToTepHO1 anredpu Maxima.
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