УДК 622.235

Влияние буровзрывного способа проведения горных выработок на физико-механическое состояние законтурного массива

Шевцов Н. Р. 1 , Гречихин Л. И. 2

 1 Донецкий национальный технический университет, Донецк, Украина 2 Минский государственный высший авиационный колледж, Минск, Беларусь

Аннотация

При проведении горных выработок буровзрывным способом происходит существенное нарушение механических свойств законтурного массива. Поставлена цель выяснить, что следует реализовать при проведении буровзрывных работ в шахтном строительстве, чтобы свести к минимуму все негативные последствия после выемки разрушенной породы в законтурном массиве. Показано что, кластерный подход к строению горных пород позволил установить пути повышения выемки грунта с минимальным трещинообразованием в законтурном массиве при проведении буровзрывных работ.

При проведении горных выработок буровзрывным способом происходит не только полное разрушение горных пород, но и существенно нарушаются механические свойства законтурного массива вследствие возникновения радиальных и сферических трещин [1, 2]. Возникновение различных трещин в законтурном массиве приводит к неоправданным затратам в процессе укрепления полученной выработки, к нескольким перекреплениям выработки и к частым ремонтам. В этой связи возникает следующая цель: выяснить, какие оптимальные условия следует реализовать при проведении буровзрывных работ в шахтном строительстве, чтобы свести к минимуму все негативные последствия после выемки разрушенной породы в законтурном массиве. Поставленная цель может быть достигнута путем решения следующих задач:

- 1. разработать физико-механическую модель различных горных пород, обратив серьезное внимание на их кластерное строение;
- 2. определить условия, при которых происходит полное разрушение взрываемой породы после подрыва взрывчатого вещества (ВВ);
- 3. выяснить причину возникновения радиальных и сферических трещин в законтурном массиве;
- 4. разработать такой способ проведения буровзрывных работ, когда образование трещин в законтурном массиве сводится к минимуму.

Ниже подробно рассмотрим, каким образом можно реализовать поставленную цель путем решения сформулированных задач.

Физико-механическая модель различных горных пород. Первая работа, выполненная в этом направлении, опубликована в работе [3]. В результате показано, что в основе различных горных пород содержится каолин, который содержит глинозем и кремнезем. Для этих веществ получены энергии связи для молекул, кластеров и кластерных структур, а межкластерные пустоты кремнезема заполнены кластерами глинозема в пропорции 0,5, т.е. на две молекулы кремнезема приходится одна молекула глинозема. Выполненные расчеты межкластерной энергии связи, позволили установить количество выброшенной породы при подрыве различных ВВ. Теоретический расчет совпал с экспериментальными данными в пределах 10 %. Это позволяет утверждать, что кластерный подход к обоснованию структуры горных пород является оправданным. В дальнейшем предстоит рассмотреть влияние различных примесей на физикомеханические свойства различных горных пород.

Механизм полного разрушения различных горных пород. Для каждой породы существует критическое давление, при котором происходит полное разрушение межкластерных связей в кремнеземе и глиноземе. При распространении волны сжатия, а затем разрежения, когда

деформация превышает критическое значение, происходит разрыв межкластерных связей, что и приводит к полному разрушению горного монолита. В результате при подрыве ВВ аммонал скальный № 1 прессованный в твердой породе и в твердой глине получены соответствующие объемы выброса вследствие взрыва. Выполненные расчеты не противоречат экспериментальным данным.

Возникновение трещин в законтурном массиве. Если величина деформации не приводит к полному разрушению межкластерных связей в горном монолите, то начинает распространяться ударная волна, которая приводит к пластической деформации горной породы. При пластической деформации происходит изменение структуры материала, и на это тратится работа. Вследствие этого скорость распространения такой ударной волны должна быть меньше, чем скорость распространения звуковой волны. Так как длительность взрыва ВВ не мгновенная, а происходит конечное время, поэтому за ударной волной распространяется звуковая волна. Она догоняет ударную волну и усиливает ее амплитуду. При достаточном усилении происходит полное разрушение и вследствие этого возникает трещина. Поперечная величина трещины зависит от амплитуды образовавшейся ударной волны вследствие интерференции волн.

При подрыве ВВ на краю плоского монолита вдоль его границы распространяется ударная волна в воздушной среде, где она по скорости превышает скорость распространения звуковой волны. Поэтому фронт возмущения горного монолита от взрыва ВВ, распространяясь по монолиту, имеет цилиндрическую конфигурацию, а под действием ударной волны, распространяющейся вдоль границы монолит—окружающая среда, каждый кластер монолита возбуждается и является вторичным источником излучения. Вследствие интерференции

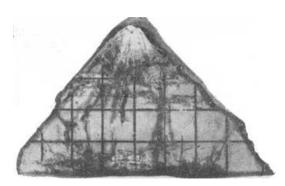


Рис. 1. Разрушение стеклянной пластины трещинами при взрыве ВВ у края [1]

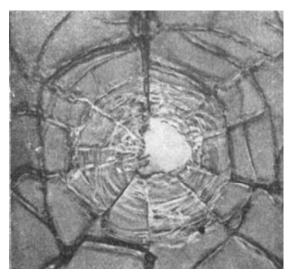


Рис. 2. Характер разрушения стеклянной пластины при взрыве BB на поверхности [1]

основной волны от взрыва BB и возбужденной волны на границе монолит—окружающая среда, происходит заметное усиление амплитуды результирующей волны. Если этого усиления достаточно для разрушения кластерных связей, то возникает трещина. Такая трещина должна располагаться примерно под углом 45^0 по отношению к границе монолита. Эта ситуация показана на рис. 1.

В монолите трещины должны представлять собой правильные четырехугольники. Возникает типичный резонатор для звуковых волн в виде правильного четырехугольника, что хорошо видно на рис. 1.

Когда взрыв BBпроисходит поверхности плоского монолита вдали от его границ, фронт возникающей ударной волны цилиндрической обладает симметрией. Вследствие этого резонатор деформируется и переходит в правильную трапецию (рис.2). Границы между трапециями формируют трещины лучевидной формы. Лучевая трещина распространяется вдоль монолита соответствии с возникшей первоначальной симметрией. Количество трапеций и лучевых трещин определяется величиной выделенной энергии при взрыве BBэнергией межкластерной связи.

Взрыв ВВ в теле крупного монолита возбуждает сферически симметричную ударную волну. Вследствие интерференции волн, формируемых каждым кластером, возникают сферически симметричные

резонаторы в виде четырехгранных усеченных пирамид. Количество таких пирамид определяется величиной выделившейся энергии при взрыве ВВ и энергией связи кластерных образований в монолите. По границам образовавшихся пирамид формируются лучевидные трещины. Наличие таких трещин было установлено в работе [2].

Возникновение трещин в законтурном массиве при проведении буровзрывных работ существенно изменяет естественную прочность пород. Чтобы избежать такого негативного последствия при проведении буровзрывных работ следует разработать такие технологии, которые сводили бы к минимуму трещинообразование в законтурном массиве. Какие в этом направлении имеются возможности, рассмотрим ниже.

Оптимальные технологии проведения буровзрывных работ. Чтобы эффективно использовать взрыв ВВ для максимальной выемки грунта с уменьшением растрескивания

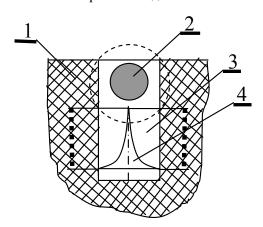


Рис. 3. Общий принцип построения системы управления фронтам разрушения. 1— взрываемая порода, 2— пиропатрон, 3— технологическое отверстие во взрываемой породе, 4— формирующая вставка.

законтурного массива, следует как-то управлять направлением распространения возникающих ударных и звуковых волн. В качестве примера рассмотрим возможность сферического преобразования фронта разрушения в цилиндрический. Для этого предлагается в отверстие шпура вставлять специальную формирующую вставку, как это показано на рис. 3. По технологическому отверстию 3 фронт ударной волны можно считать плоским и распространяется скоростью ударной волны как по воздуху. Вставка 4 преобразует сферическую волну разрушения в цилиндрическую. При этом на дно шпура ударная волна практически не ЭТОМ воздействует. В направлении законтурном массиве трещинообразование максимально будет ослаблено. Важно при этом правильно рассчитать глубину залегания

формирующей вставки при заданных параметрах ВВ.

Заключение. Таким образом, кластерный подход к строению горных пород и твердых глин позволил не только определить динамику разрушения, но и установить пути повышения выемки грунта с минимальным трещинообразованием в законтурном массиве при проведении буровзрывных работ.

Библиографический список

- 1. Кучерявый Ф. И., Друкованый М. Ф., Гаек Ю. В. Короткозамедленное взрывание на карьерах. М.: Госгортехиздат, 1962. 227 с.
- 2. Таранов П. Я., Гарцуев Е. М., Гудзь А. Г. и др. Контурное взрывание в угольных шахтах. Донецк: Изд. «Донбасс», 1972. 88 с.
- 3. Гречихин Л. И., Рублева О. И. Взрывные технологии в шахтном строительстве. // Вестник. Современные проблемы шахтного подземного строительства. Донецк. Изд. Норд-Пресс, 2006, Вып. 7. С. 100–110.

© Шевцов Н. Р., Гречихин Л. И., 2008.