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SERIES

LECTURE NO. 28. NUMERICAL SERIES

POINT 1. CONVERGENCE AND DIVERGENCE OF NUMERICAL
SERIES

POINT 2. SUFFICIENT CONVERGENCE TESTS FOR NUMERICAL
SERIES WITH POSITIVE TERMS

POINT 3. NUMERICAL SERIES WITH ARBITRARY REAL TERMS.
ABSOLUTE AND CONDITIONAL CONVERGENCE

POINT 1. CONVERGENCE AND DIVERGENCE OF NUMERICAL SERIES

Def. 1. A numerical series with terms u,,u,,u,,...,u,,... 1s called an expression

(a symbol)

Zun:ul+u2+...+un+u U, et U, = (1)
=1

n+l n+2 n+k .

= ium + ium =S5, + ium

m=1 m=n+1 m=n+1

Def. 2. The numerical u,, is called the general term of the series (1).

Ex. 1. Find the general term of the series

1 1 1 1
+ + + +....
25 59 813 11-17

The first and second factors in the denominators form the arithmetical prog-

ressions with the first termsa, =2, b, =5, arithmetical ratios [differences] d, = 3,
d, =4 and the n-th terms

a,=a,+d (n-1)=2+3(n-1)=3n-1,b, =b +d,(n-1)=5+4(n-1)=4n+1.
Therefore the general term in question equals

1 1
YT b Gr-1)an+1)




4 Power series

Def. 3. The sum of n first terms of the series (1), namely

n
Sn:Zum:ul+u2+...+un, (2)

m=1
is called its n-th partial sum.
For example, the first, second and third partial sums are equal to
S, =u,S,=u, +u,,S; =u, +u, +u,,..

Def. 4. The series

Z“m:”n+1+“ +otu, . (3)

n+2 n+k .
m=n+1

is called the n-th remainder of the series (1).
Def. S. If there exists the limit of the n-th partial sum of the series (1) for
n—> o,

3limS, =S # o0, (4)

n—>0

the series is called convergent one. The number S is called the sum of the series, and

one can write
Zun:ul+u2+...+un+...:S (5)
n=1

and tell that the series converges to S.

Ex. 2. Investigate for convergence the series

2 1 111 1
Z(3n—1)-(3n+2)_2-5+5-8+8-11+"'+(3n—1)-(3n+2)+"”

n=1

Let's at first remark that

1 _1/3_1/3_%1_1)
(Bn-1)3n+2) 3n-1 3n+2 3\3n-1 3n+2

because of

1 __4 B
Gn-1)(3n+2) 3n-1 3n+2

,1=A4(3n+2)+BBn—-1),1=34+3B)n+(24-B),

34+3B=0, [A+B=0, 1 1
—A=—,B=—-..
24-B=1; |24-B=1; 3 3
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,... to n we'll represent the n-th partial sum

Assigning successively the values 1, 2, 3

of the given series as follows

11 1 1 1
+ + + +...+ =
2:5 5.8 811 11-13 (Bn-1)3n+2)

11 1) 1(1 1) 1(1 1 1( 1 1 1( 1 1
=—| ===+ === |+=| ——— |+...+— — +— — =
3(2 5) 3(5 8) 3(8 11) 3(311—4 3n—1j (311 j

n_

3 -1 3n+2
1 1 1. 1 1 1 1 1 1 1 1 1(1 1
e+ —— .+ — + — =—|=- :
3 2 5 5 8 8 11 3n—4 3n-1 3n-1 3n+2 32 3n+2
Hence
lim S —11m1 I ! llim l— ! :l l—lim ! :l l—0 :l;too
e " aow 3 2 3n+2 3no0\ 2 3pn+2 3\2 nm»»3p+2 3\2 6

By the definition of convergence the given series converges to the sum S = 1/6.

Ex. 3. Investigate for convergence the series

By analogy with preceding example we represent the general term as the diffe-
rence of two simple fractions

~497% —70n—24

14 ~ 14 A B

1 1
49n* —70n —24

= + — —
(Tn+2)Tn—12) Tn—12 Tn+2 Tn—-12 Tn+2
and then (taking successivelyn =1, 2, 3

,...) obtain the n-th partial sum and the sum
of the series

g 1 1 1t 1 1. 1 1. r v v 1
"7 5.9 2 16 9 23 16 30 Tn-33 Tn—-19 Tn-26 Tn-12
1 1 1 1 111 1

— +

m=19 Tn-5 Tn-12 7Tn+2 5 2 Tn-=-5 Tn+2

S=lmS =lim —l+l— ! ! l—l i

n—o0 e\ 5 2 Tn=5 Tn+2) 2 5 10

Thus the given series converges and has the sum S = 0.3 (it converges to 0.3)
Ex. 4. Prove yourselves that the series

“~on’>+12n-5
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converges and has the sum S =0.7.

Ex. 5. Find the sum of the series

i 3n+8
nn+1)n+2)
Answer.
3n+8 =i—i+L;Sn =4—§+2+ L. + 1 ;8 =3.5.
n(n+l)(n+2) n n+l n+2 2 n+l n+l n+2
Ex. 6. The geometric progression
a+aq+aq*+..+aqg" " +... (6)
with the ratio ¢ converges in the case ‘q‘ <land has the sum
g__4a
l—q’
that is
Zaq”":a+aq+aq2+...+aq”_'+...:1L, q‘<1. (7)
n=1 -

Indeed, the n-th partial sum of the progression equals

a(l—q”)_ a a
l-g¢g _1—q l—qq

_ 2 n-1 __
S, =a+taq+aq” +..+taq" =

and has the limit S = a/(1-¢) for n — o, because of lim ¢" =0 if ‘q‘ <1.

n—>0

Ex. 7. Test for convergence the series
30"

on the base of the definition of convergence.

Dividing termwise we represent the n-th partial sum of the series as follows

g2 () )50 505

We obtain three geometric progressions with the first terms

1
al :—’azz—’a3:

1
15771007 6
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and the ratios

Hence the n-th partial sum is

g - 1/15-(1/15)" 1/10-(1/10)" .\ 1/6—(1/6)"
" 1-1/15 1-1/10 1-1/6

b

and the sum of the series equals

115 y1o 16 1 1.1 101

S:thn_ + :———+———z0.16.
n—>c0 1—1/15 1—1/10 1—1/6 14 9 5 630
Def. 6. If

lim §, =00

n—»o0
or the limit

lim S,

n—»oo

doesn't exist, the series is called divergent one. One can say that the series diverges.
Ex. 8. The arithmetic progression
1+2+3+4+...+n+...
diverges, because of its n-th partial sum equals

S =1424344+..4n= nin +1)

and has the infinite limit for n — 0.
Ex. 9. The geometric progression (6) diverges for ‘q‘ >]1 and a#0.

n

ma)lf ‘q‘ >1 then

q"|— o as n— oo, and the limit of the n-th partial sum,

lim §,,, is infinite or doesn't exist.
n—o0

b) If g =1, the progression takes on the form a+a+a+...+a +..., has the n-th
partial sum S, = an whose limit equals +o for @ >0 and —oo for a <0.
c) If g =—1, the progression has the form

a+(-a)+a+(~a)+a+(~a)+a+(-a)+..=a-a+a-a+a-a+a—a+..,
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its n-th partial sum equals 0 for even n and a for odd n. Therefore the limit lim §,

n—©
doesn't exist.
Thus in all three cases a), b), ¢) the progression diverges.m
Ex. 10. Harmonic series
ZL:1+L+L+L+...+L+... (8)

nP 217 317 417 nP
converges for p >1 and diverges for p <1.
We'll prove this fact later.

For example the series

1+L+L+L+ +i+ 1+ ! + ! + ! + +L+
tEt et ot 2 st aa

converge (p =2>1, p=3/2> 1 respectively), and the series

1 1 1 1 1 1 1 1
l+—+—+—+..+—+., 1+ +—=+—=+

e F—+...
2 3 4 n V2 33 4 Un

diverge (p =1, p =1/3 <1 respectively).

Theorem 1. The necessary (but not sufficient) condition for convergence of
the series (1) is the next:

lim u, =0. (9)

n—»0
Theorem 1 means that if a series (1) converges, then the limit of its general

term u,, as n — oo, must be equal to zero.

mLet the series (1) converges to S # oo. It means that

IlimS, =5, 3IlimS,  =S.

n—>0 n—>0

But

and so

limu, =1lim(S, -5, ,)=1imS, —limS, , =S-S=0.m

n—>®© n—>®© n—>0 n—>0

Ex. 8. The series
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“3n-2 = e
a , b
);4n+7 );3n+2

diverge, for

) limu, = lim > 2 ("Oj=1im—”(3‘2/”) _fim o= 2n 3703

e n(4+7/n) =4+7n 440 4

n—»o0 n— 4n + 7 o0
: : e" 00 : e’ : (ex) .e
b) limu, =lim =| —|=|lim = lim ——— = lim — = +o0| = 400,
n—>o n—>o 3n +2 o0 X—>+00 3x +2 X—>+00 (3x + 2) X—>+00 3

and the necessary condition for convergence of the series isn't fulfilled.
Ex. 11. The necessary condition for convergence is fulfilled for the next two
se-ries
R ®

2. Y

2 b >
Snln“n  Sn +1

but one can say nothing as to their convergence or divergence. Later we'll prove that
the first series converges and the second diverges.

Theorem 2. If the series (1) converges, then for any # its n-th remainder (3)
converges. If for some # the n-th remainder (3) of the series (1) converges, then the
series by itself converges.

mWe'll prove the first part of the theorem. Let the series (1) converges to S and
o, 1is the k-th partial sum of the remainder (3),

O, =Uu,,tu,,

+otu,,,.

It is obvious that

-S,

Gk = Sn+k n
hence there exists the limit

S )=1lmS , —S, =5-8 #o.

k—©

limo, = lim(S

ko k ntk

It means that the remainder (3) converges for each n.m
The meaning [essentiality, substance] of the theorem 2 consists in follows:
convergence or divergence of a series doesn't change if one adds to it or rejects from

it finite number of terms.
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Corollary 1. Let's denote by R, the sum of the n-th remainder of a convergent

series. From the proving of the theorem 2 we'll obtain

R =limo, =S-8,

k—

And therefore
S=§,+R,. (10)
The formula (10) represents the sum S of a convergent series as the sum of its n-th

partial sum S, and the sum R of corresponding n-th remainder.
Corollary 2. The sum R of the n-th remainder of a convergent series goes to

zero for n — oo,

limR, =0 (11)

n—>0

mlt follows from the formula (10) that
limR, =lim(S—S,)=S-1limS, =S-S=0m

Corollary 3. For large n the sum S of a convergent series approximately equals
S~=S, (12)
with absolute error

R

n

o= (13)
which can be done however small for sufficiently large values of 7.

In practice it isn't necessary to investigate a series for convergence with the
help of the definition 5, that is by seeking the limit of the n-th partial sum. Often it is
sufficient to ascertain its convergence or divergence from the other considerations
[arguments, reasons] and in the case of convergence to find the sum of the series ap-
proximately.

There are many tests for convergence or divergence of series. We'll begin from
stating without proof the next theorem.

Theorem 3 (Cauchy necessary and sufficient condition for convergence of a
numerical series). A numerical series (1) converges if and only if for any however

small positive number & there exists a number N such that for any greater number n

and for arbitrary number m the inequality



11 Power series

S..—S

n+m n

<¢&

holds. Symbolically
(Series (1) converges) < (Vg >0,3AN,Vn,Vm: {n >N = 8}) (14)

Theorem 4 (termwise linear operations on series). Let be given two series

S

n+m - S}’l

convergent to S and 7 respectively,
U+, Aty et =D u, =S, VAV, vty =Dy =T

In this case for any number &

ku, +kuy + ..+ ku, .. = i(kun)z kiun =k(u,+u, +..+u +..)=kS  (15)
n=1 n=1

(taking a constant factor k£ out of a convergent series),

(u, 2v)+(uy v, )+ .+ (1, £ :Z )=D u,£> v, =
1 n=1

=(u,+uy+otu +.)E(V v, oty +)=SET (16)
(termwise addition or subtraction of two convergent series), and for any numbers .

and /

(ku, + v, )+ (kuy + v, )+ .+ (ku, +1v,)) i ku, +1Vn):ki“n+li"n =

n=1
= (ku, +kuy + .ot ku, )+ (I + vy + o+ v, +0) =k u, +1) v, =kS+IT (17)
n=1 n=1
(termwise linear combination of two convergent series, a corollary of the formulas
(15), (16)).
mValidity of the formula (15) follows from the equality which connects the

n-th partial sums o, S, of the series

Namely,
o, =ku +ku, +ku,+...+ku, =k(u1 +u, +u, +...+un)=kS

n

and therefore for the sums o, S of the series we get



12 Power series

o =Y (ku,)=limo, =limkS, =klim S, kZu =kS.m
n=1

n—>x0 n—>0 n—>0 1
n=

The formulas (16), (17) prove yourselves.
Ex. 12. The sum of the series
£0"-3" 15"
(see Ex. 7) can be easy calculated with the help of the theorem 4 and the formula (7).
Indeed,

3352 () (6 )26 2 20 -

yis. 110 Y6 1 1 1 101 .o

T1-115 1-1/10 1-1/6 14 9 5 630

POINT 2. SUFFICIENT CONVERGENCE TESTS FOR NUMERICAL
SERIES WITH POSITIVE TERMS

Cauchy theorem (theorem 3) on the necessary and sufficient condition for con-
vergence of a numerical series is of great theoretical importance but of hard practical
applications. We as usually deal with some simple sufficient conditions (sufficient
tests) for convergence. At first we'll study numerical series with positive terms
[positive term series] .

Let be given a numerical series with positive terms

[M]s

u, =u, +u, +...+u, +..,Vn:u, >0. (18)

n=1
Its partial sums form the increasing number [numerical] sequence

S, <S5,<§;,<...<§, <., (19)

and on the base of the lecture No. 12 (point 3, general properties of limits of func-

tions, property 5) we obtain the next theorem which states a very general sufficient
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condition for convergence.
Theorem 5. For converges of a positive term series it's sufficient the sequence
of its partial sums to be bounded above.
In other words if it exists some number C such that for any »
S <C, (20)
then the series (18) converges.

Let we have two series with positive terms, namely (18) and a series
Zvn=vl+v2+...+vn+...,Vn:vn>0. (21)
n=1

Theorem 6 (the first comparing test for positive term series). Let (at least for
sufficient great values of n)
u, <v_ (inparticular u, <v ). (22)
1) If the series (21) converges, then the series (18) also converges.
2) If the series (18) diverges, then the series (21) also diverges.
mLet for example the series (21) converges to some number 7, namely there

exists the limit of its n-th partial sum o,

limo, =lim(v, +v, +..+v,)=T.

It's obvious that
o,<T.
By virtue of the inequality (22) (which can be supposed to be fulfil for any n) we
have for the n-th partial sum S, of the series (18)
S =u+tu,+..+u, <u+u,+..+u, =oc, <T,S <T.

Therefore the sequence of partial sums of the series (18) is bounded above by the
number 7, and by the theorem 5 the series converges.m

With the help of the theory of limits one can prove the next theorem.

Theorem 7 (the second comparing test for series with positive terms). Let it

exists the limit of the ratio of the general terms of the series (18) and (21),
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lim % = & (23)

n—» v,
If k£ 1s a finite positive number (& # 0, k # oo ), then both series (18), (21) con-

verge or diverge simultaneously.

Remark 1. For limiting casesk =0 and k£ =o we able to conclude as follows.

If £ =0, then the series (18) converges in the case of convergence of (21), and
(21) diverges in the case of divergence of (18).

If k£ =0, (18) diverges in the case of divergence of (21), and (21) converges in
the case of convergence of (18).

To apply comparing tests we must possess some series with known conver-
gence or divergence. One often uses various cases of the geometric progression (6)
(see Ex. 6) and the harmonic series (8) (see Ex.10).

Ex. 13. Test for convergence a series

1 1 1

—+ + +....
2 2.2° 3.2°

Finding the general term of the series we can represent the latter as follows

1 1 1 1
+

+ + +...
1.2' 2.2° 3.2° n-2"

+....

Then we compare it with the convergent series

(the geometric progression (6) with the ratio ¢ =1/2,0 < g <1). The comparison

gives
1 1
< —
n-2" 2"

for any n > 1. On the base of the theorem 6 (case 1)) the given series converges.

Ex. 14. Solve the same problem for the series

+—....

“lnn In2 In3 In4 Inn
Y=+
o n 2 3 4 n



15 Power series

Observing that In2>1,In3>1,In3>1,...,Inn >1,... we compare the given

series with the divergent series

1 I 1 1 1
D=l o+ttt
N 2 3 4 n

(the harmonic series (7) with p =1). The comparison gives

Inn 1

non
for n > 2. By virtue of the theorem 6 (case 2)) the given series diverges.

Ex. 15. To investigate the series for convergence

Z\/211 -

we'll take for comparison the convergent series

> =3

n=1 n n:l

4n* +3n+7

3

(the harmonic series (7) with p =3/2 > 1) and make use of the second comparison

test (theorem 7). The limit of ratio of the general terms of these two series is

3
1 L] n . 1 1
lim \/ Ty = lim 3 4 3 7 :h—l;n 4 3 7 :\/5
2 —dn® +3n+7 ] nz\/2_+2+3 \/2_+2+3
n n n n n n

The limit £ = 1/ V2 is positive finite number, and so the given series converges simul-

taneously with the convergent harmonic series.
Theorem 8 (D'Alembert’ test). If for a positive term series (18) there exists
the limit

lim Zntl 7 (24)

n—» un
then the series converges for / <1 and diverges for /> 1. In the case / =1 one can't

say anything about behavior of the series.

ml. Let at first

' D’Alembert, J. (1717 - 1783), a French mathematician and philosopher
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.u
Iim— =]<1.
n—>0 un

By the theory of limit for any & > 0 there exists a number N such that for any n > N
the next inequalities hold:

U1
u

n

u u
<g,—e<J<gl-g<r<]ve, (-, <u, <([+&u,.

u u

n n

n+1

Let ¢ is so small that / +¢& < 1. Taking successively n =N, N+1, N +2,... in the
inequality

u, < (l + g)un ,
we'll obtain

uN+1 < (l + E)MN ’

Uyis <(l+8)”zv+1 <(l+8)2”1v9

3
uN+3 < (l+8)uN+2 < (l+8) uN’
We see that for any n > N +1 the terms of the given series are less than the corres-
ponding terms of the converging geometric progression with the ratio g=/+¢& <1.
By the theorem 6 (case 1)) the given series is convergent one.

2. Let now

.u
Iim—2=]>1.
n—>0 un

In this case for sufficiently large n we'll have

u
L >1=u, <u,, <u

u

n

<u . <..,

n+l n+2 n+3 .

and the necessary condition for convergence of the series isn't fulfilled. The series
diverges.m
Ex. 16. Investigate for convergence the series

o) 2

n
w
n:12

Here
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2 +1
un = Z” 5 un+l (n2n+1) 9
and

2 2 2

(n+1)° , 2”(n(1+1D n2(1+ lj
U, _ 1 2! 2" (n+1) 1 n 1 n) _
lim —= =lim ———=lim———~=1lim 5 =lim 5 =

n—o un n—o nf n— 2n+ n n— 2” 2n n— 27’1

2n

2
=llim(1+lj “La
2}1—)00 n 2

By virtue of D'Alembert test the series converges.
Ex. 17. Solve the same problem for the series

1+47 4710
2 26 2610

The general term u, and the next term u, ,, of the series are

_4.7-10-...-(4+3-(n-1)) _ 4-7-10-...-3n +1)
2:6:10-..-(2+4-(n—1)) 2-6-10-..( -2)

-
_4:710-...-Bn+1)-B3(n+1)+1) _ 4-7-10-...-(3n+1)-(3n+4)
T2:6:10--(4n-2)-(4(n+1)-2) 2-6-10-...-(4n—2)-(4n +2)’

n

n+l

Hence

u,, . (4-7-10-...-(3n+1)-(3n+4) 4-7-10-...-(3n+1)
Iim 2= = lim : =
ooy e 2.6:10-...-(4n—2)-(4n+2) 2-6-10-...-(4n-2)

. 4-7-10-..-(3n+1)-(32+4)-2-6-10-...-(4n-2) . 3n+4 . 3n 3
= lim = lim =lim—=—<1.
1>02.6-10-...-(4n—2)-(4n+2)-4-7-10-...-(3n+1) m>=d4n+2 n>=dn 4

The series is convergent by D'Alembert test.

Ex. 18. The same problem for the series

= (2n+1)3/3n-1
T

We have

_(2n+1)3/3n-1 Lo 2(n+1)+1)3/3(n+1)-1 _(2n+3)3/3n+2
" (3n) o (B(n+1)) Gn+3) 7
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U, (2n +3)3n+2 (2n+1)33n-1) . (2n+3)(3n)3/3n+2
ey P (3n+3) (3n) >0 (3n+3)(2n+1)3/3n -1
(2n+1)1(2n+2)2n +3)(3n) . [3n+2

- 1 . hm 3 =
>0 (3n)(3n +1)3n+2)3n+3)2n+1) =\ 3n-1

. (2n+2)2n+3)
" oe (3n+1)3n+2)3n+3)

n2(2+2j(2+3

— lim 1 " 5 "

! n3(3+j(3+j(3+
n n

(2+2J(2+3j 4
lim — - lim n n 1=0-—=0
27

e (3 + 1)(3 + 2}(3 + 3)
n n n

The series converges.

Ex. 19. D'Alembert test isn't applicable to the series of Ex. 11 that is to

%

n

o0

Zzl’l

~p?+1

nln’n’

mFor the second series

u”“—hm(( n+l  n j_l (1(1+1)(n2+1)limn{“;laj(Hnlzjl-

n+l1) +1 n*+1

lim

n—>0 u n—>0

For the first series

= lim

lim 2L = lim =
o (n+1)n*(n +1)

1 1 nin’n
ooy e (n+1)In*(n+1) nln’n

2

) n i Inn ? i n i Inn

=lim -lim = 11m—1-11m — =
el ln(n+l) n_)w n(l—l—j 'In n(l—l—j

n n
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2 2
=lim—11 lim 7 | =lim lnnl -
1+~ Inn +ln(1 +j lnn(1+ln(1+j/lnnj
n n n
2
2
o) e
" 1+ln(1+j/lnn 1+0
n
Ex. 20. Prove that for any positive number a
lim < = 0.
n—>0 n!

mLet's introduce the numerical series with the general term a” / n!, namely

It converges on the base of D'Alembert test (verify!). Therefore by virtue of the ne-
cessary condition for convergence of a series the limit of its general term equals zero
ifn—oow.m

Theorem 9 (Cauchy' radical test). If for a series (18) with positive terms

there exists the limit

lim4fu, =1, (24)

then for / <1 the series converges and for / > 1 diverges. The case / =1, similarly to
D'Alembert test, 1s doubtful one.
Ex. 21. Prove convergence of the series

i (1 + %j_}ﬂ .

n=1

The general term of the series

' Cauchy, A.L. (1780 - 1859), an eminent French mathematician
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and
_ _ N Y
11m"\/2=11mn I+—| =lm|l+—| =e =-<I1.
By Cauchy radical test the series converges.
It is useful to observe that
lim%/n =1. (25)
mWith the help of L'Hospital rule
! LU lim 117 1 1 1
lim&/n =limn" =lime"  =e~" " =|lim—> =1i (inx) = O=e’=1m
n—>0 n—>0 n—>0 X—>0 x X—>0 x X—>0 x

Prove yourselves that for any natural m

lim&/n+m=1. (26)

n—>0

Ex. 22. The series

diverges because of by (24) and (25)

1
lim 2/u —11mn1/——11m . =2-1=2>1.
n—»o0 n—»o0 n—»o0 ” n hm ”‘/n

n—>0

Theorem 10 (Cauchy integral test). [f we substitute #n by x in the general term

u, of the series (18) (with positive terms), we'll obtain a function f(x)=u_. If this
function is positive continuous non-increasing on the interval[l, o), then the series

(18) and the improper integral
[ £ () (27)
1

both (simultaneously) converge or diverge.

mLet k1< x<k; on the strength of non-increasing of the function f(x)=u

X

one gets successively
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k k

f(k)S f(x)é f(k_1)> U < f(x)guk—v J”kdx = Jf(x)dx < j‘:uk—ldxa

k-1

k

u, < Jf(x)dxéuk_l. (28)

k-1
Putting successively £ =2,3,...,n in (28) and adding termwise all the inequalities

one obtains

n
U, +u, +...+u, ij(x)dx£u1+u2+...+un_l,
1
or

(29)

1. If the integral (27) converges, then

n—>0

Of £(x)dx = limj £ (x)dx.
1 1
By positivity [positiveness] of the function f (x) the integral
]2 £ (x)dx
1
increases with », and so by (29)

Tf(x)dx < ]Of(x)dx, S < Tf(x)dx +uy < | (o )dx +u,.

——3

Thus, the sequence of partial sums of the series is bounded above, and the series (18)
convergers by virtue of the theorem 5.

2. If the series (18) converges, the inequality (29) permits to prove convergen-
ce of the integral (27).m

Ex. 23. Investigation of the harmonic series (8) on convergence.

In this case the general term of the series is

and corresponding function
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It's known (see Lecture No. 23, Point 2, Ex. 2) that the improper integral
J ek = [
1 X
converges for p >1 and diverges for p <1. Therefore the harmonic series (8) con-
verges for p >1 and diverges for p <1.
Ex. 24. With the help of Cauchy integral test investigate for convergence the

series

aZ bZ

“nln? n’ 'n 241

of Ex. 11.

a) For the first series

4 = 1
" nln’n
and the corresponding function
1
X)=
f( ) xIn® x

1s positive continuous non-increasing on the interval [2, ). The improper integral

0 0 ln . 0 0
J o= [ g L2 Qe | gy 1T 1
A xn’x x—dy, y 2| | 23yl In2

converges and therefore the series a) also converges.

b) The second series is divergent, because of

n X
" R f(x)_xz—l-l’

and the improper integral

F © xdx 2xdx 1 ’
!f(x)dxz!x2+l— jx +1——lnx +1] =

diverges.
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Ex. 25. Apply Cauchy integral test to the series
i 1
i’ +6n+18°

Corresponding improper integral

r dx l(x2+6x+18)=zf,x+3=zf, x| Ljoo ¢ dt
Jz+6 T1s |2 t |4 w:Jt2+9:
1 X * x=t-3,dc=dt, x> +6x+18=1>+9 4

S A t 4 1(rx 4
= —| lim arctan ——arctan— |=—| — —arctan— | < o
3 3 32 3

1 t
= —arctan —
3

{—w

4

is convergent, and therefore the series converges.

POINT 3. NUMERICAL SERIES WITH ARBITRARY REAL TERMS.
ABSOLUTE AND CONDITIONAL CONVERGENCE

In the Point 2 we have dealt with numerical series with positive terms [with
positive term series]. Now we consider series whose terms are arbitrary real numbers
both positive and negative, so-called real term series. By virtue of the theorem 2 we'll
suppose that series in question contain infinitely many positive and negative terms.

As the first example of such the series we'll consider that alternating.
Alternating series

Def. 7. Alternating series is called that of the next form:

Z(—l)n_'un =u, —u,+u; —u, +...(Vn:(u, >0o0ru, <0)), (30)

n=1

where all numbers u, have the same sign. In other words an alternating series 1s a

series with terms of alternating signs.

Theorem 11 (Leibniz' test). If in an alternating series (30)

! Leibniz, G. (1646 — 1717), the great German philosopher and mathematician
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a) the necessary condition of convergence

lim u, =0 (31)

n—»0
is fulfilled,
b) the terms don't increase in modulus,

then the series converges, and its sum S satisfies the inequality
S| <oy (32)
mLet for definiteness [to fix the idea] all numbers u, are positive.

1. At first we consider partial sums of the series (30) with even number of

terms. Let's represent the 2m-th partial sum in two forms, namely

a) S, =(u, —u,)+ (g —uy )+ (g —ug ) ¥+ (), —u, );

b) S, =u —(u, —uy)—(u, —ug)—...~ 1y, , —1,, )—1t,, .
If follows increasing of S,, with m from the first representation and boundedness
above of S, from the second. Therefore there exists the limit S of S, for m — oo,

lim S

m—>0

=S.

2m

2. To finish we must prove that the sequence of partial sums of the series (30)
with odd number of terms converges to the same limit S. But by the condition (31)

lim S, ,=lim(S, +u, )=1lmS, +limu, =S+0=35.

m—>o0 m—>o0 m—>0 m—>0
We have proved that
limS =S

n—>0

for any n both even and odd, and so the series (30) converges. For the case of posi-
tiveness of all u, we've obtained the inequality S <u,. In general we'll come to the
inequality (32).m

Ex. 26. The alternating series

i(—l)”"lzl—l+l—l+...+(—l)”"l+
n

n=1 2 3 4 n

satisfies both conditions of Leibniz test:
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1

4

a) 1> >l> >, 1

Therefore the series converges, and one has
1S]<1
for its sum S.

Ex. 27. Find approximate value of the sum S of the series

= 1 1 1 1
z ot
p 2n+1 43 4.5 4.7 49
The series is alternating one, it satisfies the conditions of Leibniz test and the-
refore converges. By virtue of the formulas (12), (13) we have
S=S§,
with absolute error

a=R]|.

1. Let n=3. Then

47 449

is the sum of the convergent alternating series, and by (32)

1

IR, <|- e 7‘ =0.002232142857...< 0.002.
Further
S, = 1—L+ 21 ~1.000—-0.083+0.013=0.930;
4.3 4°.5
0.930-0.002 < § <0.930+0.002, 0.928<5<0.932,

and

S~09,
where all digits are exact, or

S ~0.93

with the accuracy to 0.01.

2. Let now n =4. In this case
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1 1 1
R, = = +.:R,|< =0.000434,
Yo4t9 451 | 4*.9

1 1 1
— + —

4.3 4*.5 4.7
=1-0.083333+0.012500-0.002232 =0.926935,
0.926935-0.000434 < § <0.926935+0.000434,
0.926501< 5 <0.927369,

S ~0.92 with all exact digits or better

*

4

S ~0.927 with an accuracy to 0.001.
3. Let at last » =5. By the same way we find
1 1 1
A=t NEE
1 N 11 N 1
4.3 4*.5 4.7 4*.9
+0.0004 = 0.9274,
0.9274-0.0001< .5 <0.9274+0.0001,
0.9273<85<0.9275,
S ~0.927, and all digits are exact.

R{< ~0.000089 < 0.0001;

S, =1 ~1.0000-0.0833+0.0125-0.0022 +

Ex. 28. The alternating series

= 1 1 1 1 1 1 1 1
— = — + — +ot — +...
n;(\/;_l \/Z+1j V2-1 2+1 3-1 3+1 Jn=1 n+1
is reduced to harmonic one with p =1 and therefore diverges. Indeed,

1 1 (Wn+1)-Wn-1) 2

Ji-1 Jn+l {n-1)dn+1) n-1’

and

= 1 1 =] 11 1
> = =Y =2 I —H ot |
S\ Jn-1 Jn+1) “Zn-1 23 n

For the given series the necessary condition (32) of convergence is fulfilled, but the

second condition of Leibniz test isn't fulfilled. Indeed, for every n
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1

1
<
Jn+1 n+l-1

(verify!).

Absolutely and conditionally convergent series

Let be given a numerical series with arbitrary real terms (it can be called as a

real term series or a plus-and-minus series)
Zun:ul+u2+u3+...+un+.... (33)
=1
We'll introduce the series of moduli of its terms, that is the series
n=1

Theorem 12. If the series (34) of moduli of terms of the series (33) converges,

u, u, +.. (34)

= |ut, |+ iy | + [oa | + .. +

then the series (33) also converges.
mlet

o, = |u| +[uy| + |uts| + ... +

un
is the n-th partial sum of the modulus series (34). By virtue of its convergence there is
the limit

c=Ilmo,,

n—>0
and

o <o

for any n. Let's write the n-th partial sum S, of the series (33) in the next form:
S, =8, =5,
where S is the sum of all positive terms of the series (33) in S, and S, is the sum of
moduli of all negative terms. It is obviously that
S <0,20,8 <0,<0=S,<0,5 <o.
It means that the sums S, S are bounded above by the number o and so have the

limits S~, " for n >
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S =lmS,, $*=1limS; .

n—>0 n—>0

Therefore there exists the limit S of the n-th partial sum S of the series (33),

S=1imS, =lim(S! =S, )=limS’ —limS, =§" -85 <o,

n—>0 n—>0 n—>0 n—>0

that is the series converges.m

Def. 8. If the series of moduli (or the modulus series) of a real term series (33)
converges, then this latter is called absolutely convergent (one says that it absolutely
converges).

By virtue of this definition we can call the theorem 12 as that on absolute con-
vergence of a plus-and-minus series.

Corollary. It follows from the proof of the theorem 12 that in absolutely con-
vergent series the series of positive and negative terms are convergent (correspon-
dingly to S"and —S").

Ex. 29. The series

is the convergent harmonic series (8) with p=2>1.

Def. 9. If a real term series (33) converges, but the series of moduli its terms
diverges, then the series (33) is called conditionally convergent (one says that it
conditionally converges).

Remark 2. On the base of the proof of the theorem 12 we can deduce that in a
conditionally convergent series the series of its positive and negative terms are diver-
gent.

Ex. 30. The series
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(see Ex. 26) conditionally converges for its modulus series

) e 3 e Y

1 1
=Y =144+ttt
n=1
(the harmonic series with p =1) diverges.

1
n ‘on 2 3 4 n

Tests on absolute convergence

To establish absolute convergence of a real term series (33) we can apply all
sufficient tests of the Point 2.
We'll give some examples.
1. Ifthere exists some convergent positive term series
a,+a,+a,+..+a,+..., Vn:a, >0, (35)
such that
‘un‘ <a, (36)
(at least for sufficiently large »), then the series (33) absolutely converges.
Remark 3. If for some divergent positive term series
b+b,+b,+...+b +..., Vn:b >0,

the inequality

u,=b,
holds (at least for sufficiently large »), then the series (33) can't absolutely converge.
But it can converge conditionally.

Ex. 31. The series

=Ssinx+

“.sinnx . sin2x sin3x sindx sin nx
Z 2 2 + 2 + 2 +... 2
n 2 3 4 n

n=1

absolutely converges for any x because of the series of moduli of its terms

i ‘sin nx‘ _ ‘sin x‘ N ‘sin 2x‘ N ‘sin 3x‘ N ‘sin 4x‘ . ‘sin nx‘ L
=1

n2 22 32 42 n2

converges for any x by the first comparison test:
‘sin nx‘ 1
g I

2 - _2
n n
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for each n, and the positive term series

=1 1 1 1 1
Zn_2:1+2—2+3—2+4—2+...+n—2+...

n=1
converges.

2. If for a series with real terms (33) there exists the limit

: ‘” +1‘
lim “ =
n=> ‘”n‘

: (37)

then the series absolutely converges for / <1 and diverges for /> 1.
mThe limit (37) states D'Alembert sufficient test for convergence of the modu-
lus series (34). In the case />1 not only the series (34) diverges but also the series
(33), for the necessary condition for convergence isn't fulfilled. See theorem 8.m
Ex. 32. Let be given a functional series
=1

n=1 nxn

that is a series whose terms are functions. Investigate for which values of x it conver-
ges.

Def. 9. The set of all values of x for which a functional series converges is cal-
led the domain of its convergence.

By virtue of this definition we have to find the domain of convergence of the
series of Ex. 32.

The general term of the series is a function of x, which we'll denote as u,(x),

For fixed x D'Alembert test for convergence of the modulus series gives

n n

lim Uy (X)‘ _ lim[ 1 _, 1 n} _ limL}m lim n\x _
noe (x)‘ e (n + I)M n‘x‘ e (n + I)M e n(l n lj‘xmx‘
n

lim;zilimin.
BTN

n—»w (1 n lj‘x‘ ‘X +
n n




31 Power series

The series absolutely converges if the obtained limit is less than 1,

ﬁ<1:>\x\>1:>xe(—00,—1)U(19°O)9
X

it diverges if

ﬁ>1:>\x\<l:>xe(—l,l).
X

It's remaining to investigate behavior of the series at two pointsx =1, x = —1.

At the point x =1 the series becomes

=1 I 1 1
D —=l—+ ot —+
o n 2 3 n

and diverges as the harmonic series with p =1. At the point x = —1 the series takes

on the form

R 11 1 1 1 1
Z =—1+———+——...=—(1——+———+...)
i p(-1) 2 3 4 2 3 4

and converges by Leibniz test (see Ex. 26).

Thus the given series converges forx e (— oo, —1]U(1, ). In the other words its
domain of convergence is the point set (—oo, —1]U(1, o) that is the union of two in-
tervals (—oo, —1] and (1, ).

Ex. 33. Prove yourselves that the domain of convergence of the functional se-

ries

i 1

n=1 (x + 2)n
is the next point set (— o0, —3)U(~1,0).

Ex. 34. Find the domain of convergence of the series

0 xn—l_1+x+x2+x3+ +xn—l
= n2 22 32 42 n2

+....

The nth, (n + 1)th terms of the series and their moduli are respectively

0 x) -

n—1 n n—1

X X
un(x)_ nz ’ un+l(x)_ (n+1)2 ’

X

X

n—1
2

2 b

n



32 Power series

On the base of D'Alembert test for the modulus series (for fixed x)

lmw lim * .x”‘l =lim————=1lim il
n—> ‘u x)‘ n—e (n+1)2' n’ ”—"“’xn_l(n+l)2 ”"“0xn_lnz(l—l-l/n)2

n n_2

. 1
= xlﬂmz‘x‘-lz‘x‘.

The series absolutely converges if ‘x‘ <l,thatisif —1<x<1l,orxe (— 1, 1).
The series diverges if ‘x‘ >1, that is if x <—1orx>1,0r x € (—o0, —1)U(1, ).
It's necessary to study the case ‘x‘ =lorx==l1.

For x =—1 we have the series

iﬁ PRI ...+(_1)n_]+...

n=1
which converges by Leibniz test.

For x =1 the corresponding series

converges as harmonic one with p=2>1.
Answer: the domain of convergence of the series is the segment [~1,1].

Ex. 35. The same problem for the functional series

YR GRS AN
N ) 0 2

n=1

Answer: (— 1, 1].

Ex. 36. Find the domain of convergence of the series

S ACEE P IS S I ST A

o nAr 2’4 P4 4.4 n’ -4
Here
_ 3)}1 -1 ‘x_?)n—l
— _1 n—1 ( n 1 x _ _
un(x) ( ) 2 4n o X)‘ PR ‘ PERYT=R “n+1(x)‘ —(n+1)2 T

and for fixed x by D'Alembert test for the modulus series
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fim MmN _ o £ =3 -3 = lim AT
oo fu (x) el (n1) 4" 04 ”*w‘x——3nl( +1) 4"

— tim ‘x 3" ‘x 3‘n 4! —‘x_?,‘lim n’ _‘x—3‘. _‘x—3‘
Corle=3 T (ne1f 44 4 e(nrl) 4 4

The given series absolutely converges if

-3

<4,-4<x-3<4,-1<x<7,xe(-1,7)

and diverges if

;>1’

3<—4 |
x—3‘>4,{x < {x< " xe(~o,-1)U(7,0).

x—3>4, x>,
Thus we know behavior of the series for all values of x butx=-1,x=7.

For x =—1 the series takes on the form

o (_ l)n—l (_ 4)n—1 o (_ l)n—l (_ 1)n—14n—1 o (_ 1)2n—2 1 | i {
Z:]: n2.4n_1 :nz=1: n2.4n—1 :nzzl‘, nz :nzz;n_ :1+2_2+3_+_+

and converges as harmonic series (8) with p=2>1.

For x =7 the series becomes

0 n—1 sn-1 w n—1
SO St 1
n°-4" = n 27 3 4
and absolutely converges (its convergence follows also from Leibniz test, see theo-
rem 11).

Therefore the domain of convergence of our series is the segment [—1,7]. It has

the length 8 and the center x = x, =3 and can be written in the form [3—4, 3+4].

Some properties of real term series

Theorem 4 of the Point 1 states some "arithmetical" properties of series. They
are similar to corresponding properties of finite sums. But series aren't finite sums,
and there are some peculiarities in their properties. In particular it concerns associa-

tivity, commutativity and multiplication of series.
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Theorem 13. One can parenthesize [put in parentheses] arbitrary groups of a
convergent series. The sum of the series doesn't change.
But it isn't permissible in general to remove parentheses in a convergent series.

Ex. 37. The series (1—1)+(1—1)+(1—1)+...+(1—1)+... converges to zero

(why?). But removal of parentheses leads to the divergent series
I-1+1-1+...+1-1+....

Absolutely convergent series possess the commutative property.

Theorem 14. One can interchange terms of absolute convergent series. Its sum
doesn't change.

For conditionally convergent series such the property isn't valid. That states the
next theorem.

Theorem 15 (Riemann'). Interchanging terms of conditionally convergent se-
ries we can obtain the convergent series with arbitrary sum and even the divergent se-
ries.

Validity of the theorems 14, 15 is based on the fact that in an absolutely con-
vergent series the series of its positive and negative terms are convergent, but in a
conditionally convergent one such the series simultaneously diverge.

Theorem 16. The product of two absolutely convergent to S and 7 series abso-
lutely converges to the product S-T.

Let for example

U, =u tuy iy U, =S, DV =V v v by, =T

n=1 n=1

[M]s

be mentioned absolutely convergent series. Theorem 16 means that

i”n ‘i"n =(u, +uy vy +otu, +.0) (v, v, v,y +0)=ST.

n=1 n=l1
By virtue of absolute convergence of the product of the series its terms can be
arranged in different ways. We can in particular write

S-T=(u +uy +uy+.ctu, +..) (v, +v, +v, +o v, +..)=

! Riemann G.F.B. (1826 - 1866), an eminent German mathematician
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= uw, + (v, v, +u )+ (U, + 1wy, Fugvy +ugy, +ugy))+
(see the table 1) or better
S T =uw, +(uy, +u,v, )+ (v, +u,v, +uw, )+ (v, +u,v, +uy, +uy, ) +... (38)
(see the table 2).

The development (38) retains correct if only one of series absolutely converges

and the other simply converges.

Table 1 Table 2

u,v, u,v, Usv, uv, | ... Wy Uy, Uy, Uy, ...

u.v u,v u.,v u,v
172 272 372 472 uyv, u,v, uv, u,v, ...

UVy | UpVs | UsVs | ULV,

uv, u,v, u,v, u,v, ...
173 7273 7373 473
UV, | UgVy | UV, | ULV,

Uy, Uy, Uy, uv, ...

Ex. 38. Find the product of series of the Ex. 34, 35 which both absolutely con-
verge on the interval (—1,1).
By the theorem 16 the product in question absolutely converges on the interval

(— 1, 1). We'll find four first its terms arranging them correspondent with the formula

(38) (see the table 2) that is in ascending powers of x (see the table 3),

x x* X x"! x2 X Xt g x"
1+2—2+3—2+4—2+...+ X T ()T | =
1 1), 1 1 1 1), 1 1.1 11 1),
=x+|——t+ S XKt oS | ot o o5 =
2 2 3 222 3 4 223 32 4

Table 3
X )c2/22 x3/32 x4/42
—f2 —x/@2) -x/(32) -x/#2)
230 xe3) 33) x/(4-3)
x4 =X 4) —x/(324) —x7/(47.4)




LECTURE NO. 29. POWER SERIES

POINT 1. POWER SERIES AND PROPERTIES OF ITS SUM
POINT 2. DEVELOPEMENT OF FUNCTIONS INTO POWER SERIES
POINT 3. SOME APPLICATIONS OF POWER SERIES

POINT 1. POWER SERIES AND PROPERTIES OF ITS SUM

We've dealt with functional series in Lecture No. 28 (see examples 31 - 35).

Def. 1. A power series is called a functional series of the form

o0
n o__ 2 3 n
Zanx =a,+ax+a,x" +a,x +..+a,x" +.. (1)
n=0
where real numbers
Ay, A1y Ay, Qyy...y A

no e

are coefficients and

0 1 2 3 n
I=x",x=x,x",x,..,x",...
power functions with integer non-negative indices [indexes].

Ex. 1. The series

ooxn—l X x2 x3 n—1
n2 :1+2—2+3—2+4—2+ + n2 +...,
n=1
© 2 3 4 n
ax” X~ X
U] (A S SR ST T
n 2 3 4 n

which was considered in Ex. 34, 35 of the preceding Lecture are those power.

One often considers a power series of more general form, namely

ian(x—xo)" =a,+a,(x—x))+a,(x—x, ) +a,(x—x,) +..4a,(x—x, ) +...(2)
n=0

Ex. 2. The series
= (-1)"(x-3)" x=3 (x=3f (x-3) ot (x=3)""
Z( )n2.(4n—l) :1_22.44_(32.42 _(42.42 T (_ ) l( 2.42—1 +

n=1

of Ex. 36 of the same Lecture No. 28 is a power one of the type (2).
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The series (1) is a particular case of the series (2) for x, =0. On the other hand

we can reduce the series (2) to the form (1) putting for example
X=X, =Y
whence
Zany” =aq,+a,y+a,y’ +a,y’ +..+a,y" +....
n=0

By this reason we can consider only the theory of the series (1).
Radius and interval of convergence of a power series

Def. 2. If a power series (1) converges at a point x = r, that is a numerical

series

Yar =a,+ar+ay +ar +tar
n=0
converges, then this point x = is called a convergence point (or a point of conver-
gence) of the series.
Such the definition is valid for any functional series. It follows that the domain
of convergence of a functional series is the set of all its convergence points.
Our 6bject is the domain of convergence of a power series.
The power series (1) always converges at the point x =0 because of it takes
the form
> a0 =a,+a,0+a,0° +a,0°+...4a,0" +...=a,+0+0+0+...= q
n=0
for x=0.
a) There are power series which converge only at the point x =0.
Ex. 3. The power series

D onlx" =0+ 1x+20x7 +30x’ + =T+ x+20x7 + 31 +...

n=1

has unique convergence point x =0, for
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n+1

X

+1' n+l !
() _ e e ™

n!(n + I)Mn‘x‘ B
u, x){ "o ‘n!x” o n!‘x‘n e onllx B

n

lim

n—>0

lim(n +1),

n—>0

X

and this limit is less than 1 (namely is equal to 0) only for x =0.
b) There are power series the domain of convergence of which is the set of all
real numbers.

Ex. 4. The power series

0 xn x2 x3 xn
D =lx T+ T+t
n! 20 3

+...
n!

n=1

absolutely converges at any point x, because of for any fixed x

()=, () = ) =

n n+l

X

n’

(n+1)

xn
n!

and

n
‘x‘ ‘x‘n!

l S2L) N G ) R L TR B
m =lm) === | =11 = x| 1l1 = .
o m(n 1) () e k1)l ) e 1) e (n 1)

n—>0
c¢) There are power series whose domain of convergence is some part of the set

of all reals.

For example the series of Ex. 1 converge on the intervals [-1,1],(—1,1] and
diverge on the point sets (—oo, —1)U(1, o), (= o0, —1]U(1, o) respectively (see Ex. 34,
35 of the lecture No. 28).

Theorem 1 (Abel' theorem). If a power series (1) converges at a pointx = x’,

). If it diverges at a pointx = x”",

x!

x!

then it absolutely converges on the interval (—

)

mLet for example the series (1) converges at a point x = x’ that is the numeri-

b

4

X

x”

then it diverges outside the interval (—

b

cal series

ian(x')" =a,+ax'+a,(x'V +a,(x'V +...+a,(x) +...
n=0

converges. By virtue of the necessary condition of convergence the general term of
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this series (namely a,(x')") tends to zero with n — co. Therefore for sufficiently lar-

ge n (let for n > N where N is some natural number) it is bounded: there is a number

A such that

‘an(x')” <A
forn>N.
Let now x is an arbitrary point of the interval (— x', [x' ), that is ‘x‘ < ‘x" and so
|x
—r<l.
X

Is this case for the general term a, x" of the series (1) we have (if n> N)

() =la, )

(') (x')

It means that for n» > N the moduli of the terms of the series (1) are less then the cor-

n

responding terms of the convergent geometrical progression with the ratio

q= il <1
x
Therefore the series (1) absolutely converges on the interval (— x,|x! ).l

It can be deduced from Abel theorem that for a power series (1) of the case c)
(when it has as convergence as divergence points) there is a positive number R (con-
vergence radius or the radius of convergence) such that the series absolutely conver-
ges in the interval (convergence interval or the interval of convergence)

(-R.R)
and diverges outside the segment [~ R, R].

Behavior of the series (1) at the end points £ R of the convergence interval
must be tested apart (separately, singly, extra zam.).
The convergence radius and convergence interval of the series of Ex. 1 are

respectively R =1,(~1,1). The first series converges at the end points x =+1 of the

' Abel, N.H. (1802 - 1829), the famous Norwegian mathematician



40 Power series

convergence interval and the second one converges at the right end point x =1 and
diverges at the left end point x =—1.

A general power series (2) always converges at the point x,. Its convergence
interval (in the case c) of existing convergence and divergence points) is of the form

(x,—R,x,—R).

For example the convergence radius and convergence interval of the series in
Ex. 2 are respectively R =4, (x, — R, x, +R)=(3—4,3+4)=(~1,7). The series con-
verges at both the end points x =—1, x =7 of the convergence interval (see Ex. 35 of
preceding Lecture).

If a power series ((1) or (2)) converges at unique point (x =1 or x = x, res-
pectively) we as usually say that R =0.

For the series of Ex. 3 we R=0.

In the case of convergence of the series at all points we say that R = 0.

We have R = in Ex. 4.

We can seek a convergence radius R of a power series by the same way as in
Ex. 34 - 36 that is with the help of D'Alembert test for the modulus series of the given

series. In one particular case we can give a corresponding formula, namely

a

n

R=1lm

n—>0

; (3)

a

n+l
if the limit (3) exists (prove this fact yourselves!).

Ex. 5. For the first series of Ex. 1 we have

2
an:an :Lz’anH:anH: 1 Z’R:hma—n:hm LZ: 1 2 :hmwzl
(l’l+1) n—>oo an+1 n—-wo| p (l’l+1) n—>oo n
for the second series
a =" Llal=Le = R=lim % =1im(l:Lj=nm”+1=1.
n+1 "—>°°‘an+1‘ nmoe\pn n+l) m* on
Ex. 6. For a series of Ex. 2
n—1 n
n’-4" (n+1)-4" olg (Lot 4" (1) -4
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2 n 2 n—1 2
- lim%: fim 1) ;}_l 4 iU gy
n—>0 n . n—>0 n . n—>o0 n
Ex. 7. The formula (3) isn't applicable for the series
o0 2n-1 3 5 7 2n-1
() f—“ S T () L
- (2n-1) 357 (2n—1)

o 1 1
(in this case a, =0,a, =1,a, =0,a, = —§,a4 =0,a, = 5,...), and we apply D'Alem-
bert test. Namely for any fixed x

2n-1 2n+1

)= )=

(2n—1) (2n-1) Qn+1)’
i un+] (XX - ‘x 2n+1 ‘x 2n-1 - (211 _ 1)' ‘X 2n+l
me==5 =1 : =1i =
n—»w ‘un (XX n—0 (211 + 1)' (2]1 — 1)' n—>o (2n + 1)")(: 2n-1
_1) 2n-1 2
o n=D "y SV
= (2n-1)2n(2n +1)x = 2n(2n +1)

The series absolutely converges on the set of all reals, and we have R = o.

Ex. 8. Prove that for the series

2 4 6 2n

i(—l)”(xz—:)!zl—x—+x— AR ) - —

o 2 4 6 (2n)

the convergence radius equals R = 0.
As conclusion we'll say that the domain of convergence of a power series can

be: a) the unique point (x =0 for the series (1) and x = x, for (2)); b) the set of all
real numbers; ¢) some finite interval ((— R, R) for (1) and (x, — R, x, + R)for (2))

inclu-ding or excluding one or both of its end points.

Properties of the sum of a power series

Def. 3. Let a point set X is the domain of convergence of a power series. For
anyx € X we denote by S(x) the sum of corresponding numerical series. The func-
tion S(x) with the domain of definition D(S)= X is called the sum of a power series.

Let for definiteness we consider a series (1), and so for any x € X we can write
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S(x)= Zanx” =q,+ax+ax’+a,x>+.+ax"+... (4)
n=0
The sum of a power series possesses some important properties which we'll
state without proving.
1. The sum S(x) of a power series is continuous in a convergence interval.
Remark 1. If a power series converges at some end point of the convergence
interval, then the sum S(x) is continuous and at this end point.
Let the series (4) converges at the end point x = R. The remark means that
S(R)=>a,R"=a,+aR+a,R* +a,R’ +..+a,R" +....
n=0
2. The sum S(x) of a power series is integrable in a convergence interval and
can be integrated by termwise integration of the series.

For the case of the series (1) integration over an interval [0, x]c X gives

JS(x)dx=J(ianx”jdx=aox+%x2+a?2x3+%x4+...+ Doty (5)
0

0 \.n=0 n+l1

The series (5) is a power one and has the same convergence radius R as the series (4).
This last fact can be easy proved in condition of existing of the limit (3). In-

deed the convergence radius R’ of the series (5) by the formula (3) equals
+1

-&Jﬂmﬂiijﬂm

n+1 n—>00 a,n n—>o0

dim™ =R

n—>0 n

al. a

_n=1

n

n—1

R' = lim(

n—>0

a

n

3. The sum S(x) of a power series is differentialbe in a convergence interval
and can be differentiated by termwise differentiation of the series without changing
the convergence radius R.

For the series (4) the property means

!

S'(x)= (Zanx”j =la, +2a,x +3a,x* +4a,x> +...+na x"" +.... (6.1)
n=0

The series (6) is a power one and has the same convergence radius R as the series (4).
Its invariability [inalterability] can be proved by the same way as in the property 2 (if

the limit (3) exists). Do it yourselves.
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3. Applying the property 3 infinitely many times we'll get
S"(x)=1-2a,+2-3a,x+3-4a,x> +4-5a.x* + ...+ (n—1)na x" 7> +... (6.2)
S"(x)=1-2-3a,+2-3-da,x+3-4-5a.x* +...+(n—=2)n—-na,x"> +... (6.3)
S"(x)=1-2-3-...-na, +2-3-....n(n+1)a,,, +.. (6.n)
Putting x =0 in the formulas (4), (6.1), (6.2), (6.3), ..., (6.n),... we'll find the

coefficients a,,a,,a,,a,,...,a,, ... of the series (4),

1 1

1 ! 1 ! 4 "
a, = S(O)zaS(O), a, =S (0):1—!5 (0), a, =5!S (0), a, =§S (0),...,
a, =ls<">(0),....
n!

Now the series (4) can be written as follows

" " (n)
S(x)=S(O)+S'(O)x+%'O)x2+ST('O)x3+...+S—'(O)x”+..., (7)

or briefly

Sw)-3 $“(0) .,

n=0 n'
The series (7) is called Maclaurin' series for a function S(x).

Analogously if a function S (x) is a sum of a power series (2),

0

S(x)=>a,(x—x,) =a,+a,(x—x))+a,(x—x,) +..+a,(x—x,) +..., (8)

then
$(6)= 500 )+ 5 M)+ S0 e oS o)
S(x) = :ZOS(";(!XO)(x_xO)n

The series (9) is called Taylor' series for a function S(x).

! Maclaurin, C. (1698 - 1746), a Scotch mathematician
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Ex. 9. Find the sum of the series

3 7 11 4n-1
X

X
f(x)_?+7+ﬁ+”'+4n—l+""

If we termwise differentiate the series, we'll obtain the geometrical progression
with the ratio ¢ = x*and the convergence radius R = 1. Indeed,
Fx)=x"+x"+x"+ . +x 2

By the formula (7) of the sum of a geometrical progression

2

After integration

x>dx 1 1 1 1
f(x)zjl_x4 +C=—5j(x2 R +de+C:—Zln

x—1

x+1

1
——arctanx+C.

On the base of the obvious condition f(0)=0 we find C =0 and get the sought sum

x—1

x+1

——arctan x .

Ex. 10. By the same method seek the sum of the series

3 5 7 2n
f(x)=x—%+%—x7+...+(—l)”‘l 2xn_1 +

-1

Ex. 11. Find the sum of the series

F()=1-32% 4 5x° — T 4ot (1) @n+ D 4. = Y (1) 2n+ 1

n=0

The problem is solved with the help of termwise integration. Namely

+C,

5 x‘<1.

[ G == 42" =7 ot (1) = 3 (1) ™ =
n=0 1+X

After differentiation

!

76)= () =[5 - L0 (Ifzz‘)f‘zx = jf)z for | < 1.

Ex. 12. Seek the sum of the series

! Taylor, B. (1685 - 1731), an English mathematician
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F(x)=1+2x+3x" +4x° +..+mx" " +...= i“nx”_l .
n=1

POINT 2. DEVELOPEMENT OF FUNCTIONS INTO POWER SERIES

Here we'll study developements of functions into Maclaurin power series.
Let be given an infinitely differentiable function f (x) It can be assigned [it

can be associated with] its Maclaurin series, namely

f(x) ~ f0)+ f'(0)x + f"(o)x2 + f’”(O)x3 +...+mx” F..= if(”)(o)

2! 3! n! par

X".(10)

It is necessary to solve the next two problems: under which conditions the se-
ries (10) converges and has the sum f (x) In other words we find conditions of deve-
lopability of functions into Maclaurin series.

The necessary and sufficient condition of developability gives us Maclaurin

formula for a function f(x) (see Lecture No. 16, Point 4)

" n n (k)
1= 1)+ s 0 SO oS IO  (n
! n: k=0 :

in which the polynomial coincides with the n-th partial sum of Maclaurin series (10)

and 7 (x) is the remainder [the remainder term, the residual member]. For example

Lagrangian remainder form is

(n+1)
rn(x)zf(nJrl(;)x”“,ce(O,x). (12)

Comparison the formulas (10) and (11) obviously leads to the nest theorem.
Theorem 2. An infinitely differentiable function is developable into Maclaurin

series (10) on some interval (— a, a)if and only if for n — oo the remainder of its Mac-

laurin formula (11) goes to zero on (— a, a),

limr (x)=0 for xe(~a,a). (13)

n—>0

't's évident that the interval (— a, a) must lie on the convergence interval of the series.
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In the case when the condition (13) is fulfilled we can write the development of
the function into Maclaurin series if we'll change the sign of correspondence ~ by the

equality sign is (10), namely

)
O)x” (14)

n=0 n.

" m (n) o
fx)=£0)+1'(0)x+ fz(!o)x2 + f350)x3 Fot S n!(o)x” +o=Y

Theorem 3. If all derivatives of an infinitely differentiable function are boun-

ded by the same number on some interval (—a, a), then the function is developable

into Maclaurin series (10) on this interval.

mLet there are an interval (- a, @) and a number C such that

7)< c
foranyn (n=0,1,2,3,...) and arbitrary x € (— a, a) (that is ‘x‘ < a). With the help of

Lagrangian remainder form (12) we have

- el

(n+1)
by virtue of Ex. 20 of the Lecture 28. It's retains to apply the theorem 2.m

n+l n+l

n+1 ‘

=S

n+l

n+l C
<

0
(n+1) ”

n+1

Ex. 13. The functions sin x, cos x satisfy conditions of the theorem 3 on the set
of all reals (—o0, ). The function e” satisfies them on arbitrary finite interval (-a, a)

(C =e"). Therefore we at once obtain their expandings into Maclaurin series from the

results of the Lecture No. 16, Point 4, namely

2 3 4 n
A T S B + ey (15)
20 3 4 n!
3 5 7 2n-1
sinx =x— 2t (1), (16)
357 (2n-1)
2 4 6 2n
cosx=1——+x——x—+...+(—l)” + (17)
20 41 6 (2n)

All the series converge on (— 00, oo) (see Ex. 4, 7, 8), and so the formulas (15), (16),

(17) are valid for any x.

Remark 2. We can reduce the series (17) by termwise differentiation of the se-
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ries (16).
Ex. 14 (the binomial series). Let's expand into Maclaurin series the next func-
tion
Sx)=(+x)", me(=w,w), (18)
where m is some real (no natural) number.

At first we find the derivatives of the function (18),
f'x)=m(U+x)f, f7c)=m(m =11+ 2)"7, f7(x) = m(m = 1)m = 2)1+x)"" ...
7O = mlm —=1)m = 2)m = (1= D1+ x)"",....

Then we find the values of the function and its derivatives at the point x = 0,
f(0)=1, f(0)=m, £(0)=m(m—1). £"(0)=mlm—1)m-2),
£70)=m(m—1)m=2)..(m=-n+1), £"0)= m(m-1)m—2)..(m—n+1Ym—-n),....
Now with the help of the formula (10) we obtain

(1+x)" ~

m(m _1)x2 . m(m—1)(m —2)x3 - m(m—1)m—2)..(m—n +1)x,, N
3 n!

~ 1+mx+

The convergence radius of this last series R =1 because of by the formula (3)

R:ﬁm(\mw—1><m—z>...<m—n+1x:\m<m—1><m—z>...<m—n+1><m—nxj_

n! (n+1) -

n—>0

n+1 ‘m(m—1)(m—2)...(m—n+1)((n+l)! . on+l

m—n‘ ‘m(m—1)(m—2)...(m—n+1)(m—n)‘n! - "—m‘m—n‘ -

n—>0

= lim

limn(1+1/n):hm I+1/n 140 _ |
e plm/n=1 = |lm/n-1 |0-1

It can be proved that on the convergence interval (— 1, 1) the conditions of the

theorem 2 are fulfilled, and so we get the next development (so-called binomial se-
ries) on this interval

m(m_l)x2+m+m(m—l)(m—2)...(m—n+l)xn+_m (19)

(1+x)" =1+mx+ o "

The binomial series (19) is the source of many other developments.
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Ex. 15. Putting m = —1 in the binomial series (19) we'll have

(52" =14 (1per CHED=D) o COED-NED-2)

o 3 X +.=,

) 1-2-
:1—x+12' x* - ' 3x3+...=1—x+x2—x3+...,

1 C n
= lx+x =X+ (1) X+ = Z(—l) x" (-l<x<1). (20)
1+x n=0
Remark 3. The series (20) can be obtained at once as the sum of convergent
geometrical progression (with the ratio g = —x if ‘q‘ = ‘— x‘ = ‘x‘ <1). It diverges at the

end points of the convergence interval (—1,1).

Ex. 16. Integrating termwise the series (20) over the segment [0, x], x‘ <1,we

obtain the expand of the natural logarithm. Indeed

2 3 4 n 0 n
1n(1+x)=x—%+x——x—+...+(—1)”‘l al +o= > (=1)" al
n

T . (~1<x<1). (21)

The series (21) converges at the end point x =1 (as alternating one by Leibniz test)
and diverges at the point x =—1 (why?).

Ex. 17. Let's substitute x by x” in the series (20),

: . :1—x2+x4—x6+...+(—1)”x2”+...:i(—l)”x2” (x2<1,—1<x<1).
I+x n=0

After termwise integration of this last series we'll obtain the arctangent development
with the same convergence interval (~1,1), namely
3 5 x7 2n-1 2n—1

X n—1 X - n—1 X
t =x——+————+...+(-1 = -1 . 22
arctan x = x 3 + P + +( ) 2n—1+ ;( ) 21 (22)

The convergence domain of this series is the segment -1, 1] because of it converges
at both the end points of the convergence interval (verify with the help of Leibniz
test!).

Ex. 18. Let's take m = —1/2 in the binomial series (19),

b CYRNE2)-D) b (C12)(12)-112)-2) L
Ji+x 2 2! 3!
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—1 :l—lx+ 12.3 x2—1.33.5x3+1.?:5.7x4—..., (23)
N1+ x 2 2°.2 273 PARY:Y

and then substitute x by —x’ (‘— x2‘ = ‘x2‘ <1, whence ‘x‘ <l,-1<x<l),

1 1, 13 4, 1.35 ¢ 1-3-57 4
=l Xt Xt Xt x +
V1= x? 2 2.2l 273! 2" -4

Termwise integration gives the arcsine development with the same convergence in-

terval (~1,1)

Lo, 13, 135 , 1357,

arcsin x = x + X+ X7+ x'+— X
2.3 2°.5.21 2°.7.3 27.9.4)

(24)
Remark 4. We often deal with developments of functions into Taylor series

F0)= )+ f'(xo)(x—xo)+%x°)(x—xo)2 A TN PP

! n!

f=3 L ey

= n
Corresponding theory is similar to that stated above for Maclaurin series.
In Ex. 16 — 18 we've found developments of several functions knowing those
of the others. Let's consider some additional examples.
Ex. 19. Expand into Maclaurin series the function
ln(l 5+x° )

Using the standard development (21) we do as follows
x’ x’
In(15+x%)=1In15{ 1+°— |=In15+In| 1+>— | =
15 15

2 4 6 8 2n
—Inl5+———> —+ al - a e+ (=1 AR
15 2-15° 3-15 4-15 n-15"

The convergence interval (— V15,415 ) of the series 1s determined by the inequalities

2
X

2
=1 1, x% <15,
15 15

x| <15, =15 <x <415,

The domain of convergence is the segment [— J15, \/E] (Why?).

Ex. 20. Taking into account that
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ln(x2 —Tx+ 12) =In((x-3)(x-4))=In((3-x)4-x))=In(3—x)+In(4-x),

expand the function ln(x2 -7x+ 12) into Maclaurin series and find its domain of con-

vergence.

Ex. 21. Expand into Maclaurin series the next function:

SIN X — X COS X
flx)= -
X
We'll obtain the required development taking into account the standard expan-

sions (16), (17) of the sine and cosine and absolute convergence of both series.

S 3 5 7 2 4 6
£(x)=Sinx l(___(l___D
! ! 21 41 6l

Gl lamsh loaklas)e
NN ==X+ = X | =+ =
21 3! 4! 3! 6! 7! g 9!

21 3! 4! 3! 6! 7! g 9

The obtained expansion is valid for anyx #0.

POINT 3. SOME APPLICATIONS OF POWER SERIES

Power series can be successively applied to integration of differential equa-
tions, evaluating integrals which aren't expressible in terms of elementary functions

and to approximate calculations.

1. Approximate integration of differential equations

a) Method of Taylor (Maclaurin) series

Let it's necessary to solve Cauchy problem

yv=fxy) yx)=y. (26)
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We seek the solution of the problem in the form of Taylor series

= 2 2 Jor = b0, o= G o= Y s (27)

in which we have to determine the values of the unknown function and its derivatives

at the point x,. By the initial condition and the given equation we have

J’(xo): Yoo y'(xo): f(xm J’(xo)): f(xoa yo)-
To find further values of the derivatives we successfully differentiate the given

equation and equations obtained after differentiation,

y'= E(x, v, y'), where Fl(x, v, y'): fl+f-y

ym — F2 (X, ¥, y!, yﬂ), y(4) — F;(X, ¥, y!, y!!, ym),-”
and then put x = x,, in all these equations,
y”(xo): E(xoa Yoo y'(xo))a ym(xo): Fz(xoa Yo> y'(xo)a y”(xo))a
y(4)(xo) =F, (xo » Yos y'(xo )» y”(xo )» ym(xo ))» -
By this way we can find arbitrary number of terms of Taylor series.

Ex. 22. Solve Cauchy problem
, : T
y'=ysinx+1, y(gj =1.
Corresponding Taylor series is

O C et SR 6 R

Acting by the theory we'll obtain

T T T
==y = [sin—+1=1-1+1=2,
y(zj y(zj 2

y"=y'sinx+ ycosx, y"=y"sinx+2y'cosx — ysinx,

y = y"sinx +3y"cosx —3y'sin x — ycosx,....

T T T T T
"—1l=yl=|sin—+y| — |[cos—=2-1+1-0=2,
y(zj y(zj 2 y(zj 2
T T T T T T T
" —1=y" = |sin—+2y| — |cos——y| — |sin—=2-1+2-2-0-1-1=1,
)’(2j y(zj 2 y(zj 2 ){2j 2

y(4)(£j—y"’(zjsin£+3y”(£jcos£—3y' ZlsinZ -yl 2 |cosZ = =5
2 2 2 2 2 2 2 2 2 ’

In this way we can write first five nonzero terms of the solution of the problem
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2 3 4
YU ) V.2 P L [V S9O Y (VOREL) IO A x—fj oo
2) 2 2 3! 2 4! 2
V4 AN ) 5 7[)4
y=14+2| x——|+|x——| +—-|x——| —|x——| +
2 2 6 2 24 2

Ex. 23. The same problem for the second order differential equation

y'=xy'—x’y+sinx, y(0)=1,'(0)=-1.
Here x, =0, so we find the solution in the form of Maclaurin series

y=(0)+y"(0)x +%y"(0)x2 +%y"’(0)x3 +$y(4)(0)x4 +$y(5)(0)x5 +....

Initial conditions and the given equation give

y(0)=1, y'(0)=-1, »"(0)=0-'(0)-0*- »(0)+sin0 = 0.
After differentiation of the given equation and its corollaries

V" =y +xy"—2xy—xy +cosx, YV = 2"+ xp" 2y —4xy' —x>y" —sinx,

2..m

+xyW =6y —6xy"— x*y" —cos X,...

n

v =2y

we get the values of the derivatives

ym(o) — 0, y(4)(0) = —2, y(s)(O) = 59

and first four nonzero terms of Maclaurin series for the unknown function

1
y=1—x——x4+ix5 +
12 120

b) Method of undetermined coefficients for linear equations

We'll illustrate this method with the help of two examples
Ex. 24. Solve the same Cauchy problem as in Ex. 23

y'—xy'+x’y=sinx, y(0)=1,3'(0)=-1.
We seek the solution of the problem in the form of a power series with unde-
termined coefficients c,,c,,c,,....
y=c,tex+e,x +ex’ .. | x°
y'=c +2c,x +3cx’ +4e, P .. |—x
y"=2c, +6c,x+12¢,x° +20cx’ +..| 1
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The initial conditions give
y(0)=c,=1,y'(0)=c, =1 ¢,=1,¢,=—1.

Then we substitute the series in the left side of the given equation and take the
series (16) instead sinx in the right-hand member. We obtain the equality of two se-
ries

x3
2¢, +(—c¢, +6¢, )x+(c, —2¢, +12¢, Jx* +(c, =3¢, +20c, )x’ +... = x—§+...
Equating coefficients of the same power of x leads us to a system of equations in the

coefficients c,,c,,c,,....

x" 2¢, = 0 c, =0,

x| —¢+6c, = 1 c,=1/6(1+¢,)=0,
x*le,—2¢,+12¢, = 0 ¢, =1/12(2¢, —¢,)=-1/12,
x*le,=3¢,+20c, = —1/6 ¢, =1/20(=1/6—c, +3c,)=5/120,

First four nonzero terms of the series, which gives the solution of the problem,

y=1—x—Lx4+ix5 +
12 120

coincide with those obtained in Ex. 23.

Ex. 25. Find the general solution of the differential equation
y'+k’y=0.
Acting by analogy with Ex. 24 we at first obtain
y=c,+ex+e,x +ex’ +e,xt +ex’ +ex +ex’ +egxt + . k?

y'=c +2c,x+3c,x’ +4e,x’ +5cxt +6c,x° +Te,x® +8c,x” +9cyx” + ... 0

y'=2lc, +2-3c,x+3-de,x” +4-5cx’ +6c,x° +6-Tc,x’ +76¢,x” +Te,x° +8cex’ +...| 1

(2! c, + k2c0)+ (2 3¢, +kc, )x + (3 Ac, +k’c, )x2 + (4 5S¢, +ke, )x3 +
+ (5 -6c, +kzc4)x3 + (6-707 + kzcs))c4 + (7 -8c, +k206)x5 + (8 -9¢, +kzc8)x6 +...=0.
Then we equate all the coefficients of the left series to zero
2le, +k’cy=0,2-3¢; +k’c, =0,3-4c, +k’c, =0,4-5¢, +k’c, = 0,5-6¢, + k’c, =0,

6-7c, +k’c, =0,7-8¢c, +k’c, =0,8-9¢c, +k’c, =0,...
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and express c,, ¢,, C¢, Cg,... through ¢, c;, ¢, ¢,, Cy,...through c, .

k* k* k° K

C, =— CpsCyp = —7CoyCg =——Cpy Cg = —Cpy -ers
2! 4! 6! 8!
k* k' k° K

C3 = — 3' C],CS =§al,c7 :—701,09 :acl,...

There aren't initial conditions in our problem, therefore we must suppose the coef-

ficients c,, ¢, to be arbitrary numbers. After some clear steps with taking into ac-

count the series (16), (17) we'll get the final result in the finite form

y=co+clx—?!cox —gclx +Z!COX +§clx —Ecox —?clx +—cox +..
2 4 6 8 2 4 6
=co(1—k—x2+k—x4—k—x6+k—x - j+cl(x—k—x +k > — k +—x +.. j:
2! 4! 6! 8 3! 5! 7'

2! 4! 6! 8! 3! 5!

:c{l_w ROROND) ];(kxacx) NN ]

y=c, coskx+%sinkx.

2. Calculation of integrals which can't be expressed in terms of elementary
functions
Here we'll confine ourselves to two interesting examples.

Ex. 26. It's of very importance for the probability theory so-called Laplace

function

\/_J 2dt (28)

The primitive of the integrant doesn't express through elementary functions. Never-
theless we can represent Laplace function by series. Substituting x by —# / 2 in the

expansion (15) and termwise integrating the obtained series we'll get

s t2 t4 t6 t8 th ) t2n

e?=1-—+ n'+...=2(—

+ - +...+(=1
2 2% 283 244 2. 1) ~

t2n
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X X X

1 X _ﬁ 1 3 5 2n+1
Dlx)=——=|e ?dt =——| x— + —..+(=1) +...1.(29
) «/27[;[ «/27[( 2:3-11 2%.5.2! =) 2"-(2n+1)-n! j( )
Ex. 27. With the help of the development (16) we find the series for so-called

integral sine

. X 357 (2n—-1)
X x2 X4 5 . x2n—2
=] 1- === —1)" dx,
!( TR n-1) " jx
X 3 5 7 2n-1
Six=151nxdx= S S S ) +... (30)
X 3.3 5.50 7.7 (2n-1)2n-1).

3. Approximate calculations

Let's limit ourselves to some examples. See also Ex. 27 which in detail was

studied in the Lecture No. 28.

Ex. 28. Find approximate value of /3 .
We'll apply the binomial series (19) for m =1/2, that is (verify!)

1 . IR E
«/1+x=(l+x)5=1+lx— 21 x* + 133 x3—143 2t (31)
20 2220 203 2.4

If we represent the number V3 as follows (with 8 decimal places)

V3 =+1.73 +0.0071 = 1.732(1 + O'OOﬂJ =1.73,/1+ 0.0071 ~1.73+/1+0.00237228
2.9929 2.9929
we can apply the series (31) for x =0.00237228. Namely
J3 =

0.00237228  0.00237228’ . 1-3-0.00237228" 1-3-5-0.00237228" .
2 22.21 23.3! 24.41
=1.73000000+0.00205202—0.00000122+0.0000000014—... ~

~1.73000000+0.00205202-0.00000122=1.73205080

= 1.73(1+

with absolute error

a =|0.0000000014~../<0.0000000014
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which isn't greater in modulus then 0.0000000014. Therefore we can assert that

V3 =1.73205080.
with all exact digits.

Ex. 29. Calculate approximate value of 7 .

For this purpose we take into account that

z = arctan L
6 V3

and make use of the formula (22) for x = L and (see Ex. )\/5 ~1.732051.

NG

1 1 1 1 1 1
— + — + — +...|=
V303343 5333 7.333 0 9.3%3 11-3°43 j

_1+1_1+1_1+1_1+j_
3.3 5.32 7.3 9.3* 11.3° 13.3° 15.37

1
m = 6arctan = 6(

V3

1

_ 6 (
V3
1 1 1 1 1 1 1 1 1
=2./3| 1- + — + — + — + — +...|=
( 3.3 5.3 7.3 9.3* 11-3 13-3° 15.37 17-3* 19.3° j
=3.464102-0.384900+0.076980—0.018329+0.004753-0.001296+0.000367 —
—0.000104+0.000031-0.000010+0.000003—-...~3.141594+0.000003—....

Thus,

T =3.141594
with absolute error

a =|0.000003~..,<0.000003.

Therefore,
3.141594 - 0.000003 < 7 < 3.141594 +0.000003, 3.141591 < & < 3.141597,
w~3.14159,
and all the digits are exact. More exact value of 7 1s 7 =3.1415926
Ex. 30. Find approximate value of cos3°.
Expressing the angle in radians and using the formula (17) we'll have

T 3.1415926
oS———

cos3° = cos% =c =¢0s0.0523599 =
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0.0523599° 0.0523599* 0.0523599°
41 6!

=1.0000000-0.0013708+0.0000003—...=0.9986292+0.0000003—...
Thus

=1.0000000 —

c0s3°=0.9986292

with absolute error

a =/0.0000003-... < 0.0000003.

Hence
0.9986292 —0.0000003 < c0s3° <0.9986292 +0.0000003,
0.9986289 < c0s3° <0.9986295,
and
c0s3°~0.998629
within to 0.000001.

Remark 5. In Ex. 28 - 30 and Ex. 27 of Lecture 28 we've dealt with alternating
series when it's easy to estimate the error. In other cases Taylor formula can be more

convenient. See Lecture No. 16.



LECTURE NO. 30. FOURIER SERIES

POINT 1. FOURIER SERIES BY ARBITRARY ORTHOGONAL
FUNCTIONAL SYSTEM
POINT 2. FOURIER SERIES BY TRIGONOMETRICAL SYSTEM

POINT 1. FOURIER SERIES BY ARBITRARY ORTHOGONAL
FUNCTIONAL SYSTEM

Def. 1. Two non-zero functions f(x), g(x) are called orthogonal on some seg-

ment [a, b] if

j f(x)g(x)dx=0. (1)
Def. 2. A system of non-zero functions is called orthogonal on a segment [a, 5]
if its functions are pairwise orthogonal on [a, b].

Let

0,(x) 9, (x), @5 (x).....0, (x).... (2)

be a functional system which is orthogonal on a segment [a, ], namely
b
J@i(x)w()dx 0 fori#j andjqo x)dx #0 for j=i, (3)

and a function f(x) is expanded into a series in this system, that is

f(x): cl@l(x)"'czgoz(x)"'c3§03(x)+"'+quon(x)""“' (4)

It is necessary to determine the coefficients ¢, c,, c;,..., ¢, ,... of this expansion.
To find ¢, we multiply both sides of (4) by ¢, (x) and termwise integrate the

result over [a, b] (if it's possible),

/() (x) =i, (x)o, (x)+ 0, (x)p, (x)+ .. +.¢, 0, (x)o, (x)+
Jf x)a’x—clj‘(p1 (x)op, x)a’x+czj‘(p2 (x)p, (x)Mx +...+¢ Jqo (x )dx + ..

By Vlrtue of orthogonahty of the system (2) all integrals from the rlght equal zero but
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one, an So

ifumuw:%ﬁﬂwm

= 1l ek (5)
f(pn (o)

The series (4) with coefﬁc1ents (5) 1s called Fourier series for a function f (x)
in the orthogonal functional system (3). The coefficients (5) are called Fourier coef-
ficients.

We can write the series (4) and coefficients (5) for highly wide class of func-
tions and orthogonal functional systems but we can't in general assert the validity of
the equality (5).

By this reason one as usually writes

£(x) ~ c,p,(x)+c,0,(x)+ 05 (x)+... 4,00, (x) + ... (6)
and says that the series (6) corresponds to the function f (x)
The problem is to find conditions to substitute the correspondence (6) by the
exact equality (4). Such the problem is solved for trigonometric functional system

which will be studied in the next point.

POINT 2. FOURIER SERIES BY TRIGONOMETRICAL SYSTEM

Let be given the next trigonometric system of functions

1 X X 2mx . 27zx nmx nmx
—, C0s—, sin—, coOS——, sin—, ..., COS——, SIn—, ... (7)
2’ l / ) ) ) )

All the functions of this system are periodic with a common period 2/.

mIf for example we take x + 2/ instead x, we'll obtain

nr(x+2/) nmx +2nmul nx nmx
osf—cos—:cos T+2n7r :cosT. ]

Theorem 1. Trigonometric functional system is orthogonal one on the seg-

ment [— [,1 ] (and on arbitrary segment of the length 27).
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mlt's enough to prove the theorem for the segment [, /]. It must be proved
that

. Nmx 1¢ . nm
J—cos—dx——Jcos—dx 0, J—51n7dx=5£51n7dx=0 foranyn; (8)

™ dx =0 for any different m and n; (9)

nmx  muax . NMX . m
J‘cos—cos—dxzo,J‘sm—sm
Y, [ [

]

namx . m
JCOS—SIH
-l

1Y [ nmx ) p nmx )
j(—j dx=—, J(cos—j dx =1, (sin—j dx =1. (11)
2 2 ! !

™ =0 for any m and n, (10)

and in addition

But
Jcosﬂdxz / sin 2| = l (sinnz —sin(—nx))=0,
% / nw [ |, nrm
¢ .onm I onmx|' !
Js1n—dx=——cos— =—(cosnz —cos(—nx))=—/(cosnz —cosnz)=0,
i’ [ nrw [ |, nm nrw

from which one gets (8) and (after transformation the products of trigonometric func-

tions into algebraic sums) (9) - (10). The first of the formulas (11) is evident, to get

ﬂxdsz

Let's now establish a correspondence between an arbitrary function f(x) and a

the other it's well to apply power reduction formulas. For example

I 2 1 1+cos ; 2 ne 1( I n
J.(COSTJ dx = I—dx——j(l+cos ; jdxzz(jdx+jcos
-l -1 -1

1
[ . 2nnx
+ sin

2nrw /

J_%(zmo)_z.-

-

series in the trigonometric system (7), namely

0

% +Z(an cos?+bﬂ sin?j (12)

f(x)~7

n=1

where on the base of the formulas (5)

lJ.f(x)a’x,

1 1
e —d e
‘N2
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a, = ! If cos—dx— If cosde

” j(cos n;zxj -

and similarly

bn:j'(.—HﬂXJJ;f sdex— If sdex
sin ——

[

-1

Finally Fourier coefficients of the trigonometric series (12) are given by the

next formulas:

] ]
a, =%j x)dx, a, = jf cos—dx b = jf(x)sin@dx. (13)
—1

-1

Remark 1. The sum of the series (12) is a periodic function with the period 2/
(in other words it is a 2/-periodic function). Therefore a function f(x) which is de-
veloped in such the series on the set of all reals must be 2/-periodic.

Def. 3. A function f(x) is called piecewise monotone on a segment [a, ] if

the segment can be divided into finite number of parts (subintervals) such that the
function is monotone on every of these parts.

Theorem 2 (Dirichlet' expansibility theorem). If a 2/-periodic function f (x) is
bounded and piecewise monotone on the segment [— [,1 ], then its Fourier series (12),
(13) converges at each point x. The sum of the series equals the function

S(x)=f(x) (14)
at every its continuity point x. If x, is a discontinuity point of the function, then the
sum of Fourier series at x, equals the half sum of the left and right limits of the func-

tion at this point

f(xo —0)+f(x0 +O)

S(x,)= 5 (15)
where f(x, - )_xgxm f(x) f(x +O)_x13xm+0f(x)'

! Dirichlet, Peter Gustav Lejeune (1805 - 1859), a German mathematician
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As resume we can write

o & - - 7 (x) in a continuity point x,
7°+Z(an cosT+bn sinsz f(x=0)+ f(x+0)
n=1 2

(16)

in a discontinuity point x

(if the coefficients of the series are determined by the formula (13)).
Remark 2. It can be proved that for even or odd functions the formula (13) for

Fourier coefficients take on some other form. Namely for an even function
l
——jf Mx, a, J‘f(x)cosgdx, b =0 (17)
0

and for an odd function

]
a,=0,a,=0,b =%jf(x)sin$dx. (18)

0

Ex. 1. A function is given by the formula
fx)=x’
on the segment [~ 5, 5]. Develop it into Fourier series.
7 Let's consider the 10-periodic
\ function f*(x) which is determined

by the given formula on the segment

[— 5, 5] (see fig. 1)". It is associated

— with its Fourier series (12), (13) (for
Fig. 1 the case 2/ =10 that is / =5), namely

o0

£ (x) ~ ? +Z(an cos%+bﬂ sin%).

%o
2 n=1
The function f*(x) is even one, and so we take Fourier coefficients in the form (17),

315 50

2l eae=2.X
5 3,

5
aozijf( dx—g x*dx =
0

0

' Such the function f : (x ) is called a periodic continuation [periodic extension, periodic prolongation] of the given

function f (X ) from the segment [— 5, 5] onto the whole set of reals.
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75 - 73 - Uu=x dv =cos——dx
a, :_If(x)COS—dx=—Ix2 cos——dx = 5 Snﬂx =
59 5 5% S du=2xdx v=—-sin—
nr 5
2
=— > (x s1nn—j j2x —sm—dx :——jxsm—dx—
5\nrx 5 ), nr 5 5
Uu=x dv=sinﬂdx 4 5 LA .
= 5 > =——[——(xcos—j +—Icos—de=
du =dx v———cosﬂ nrw\ nr o N7 5
nrw 5

2_2
nrmw

2 ; 2 ;
_ 20 5cosnﬁ—Jcos@dx -2 5-(-1) —ism@
7 5 nrw 5

j_(—l)”-loo_

The function f*(x) satisfies the conditions of Dirichlet expansibility theorem:
it's bounded and piecewise monotone on the segment [— 5, 5] (0<x* <25, x*decrea-
ses on [—35, 0] and increases on [0, 5]). In addition it's continuous on the set of all re-
als and so its Fourier series converges to it at any points. In particular it converges to

the function f(x)=x" on the segment [-5, 5]. Therefore

100 n7zx
n’r’ 5

vxel[-5,5] X =%+ian cos%=?+i
n=1

n=1
Ex. 2. A function is given by the formula
1
X)=—x
S)=3

on the interval (-7, 7). Decompose it into Fourier series.

q Let's consider the
o / V / 2m -periodic function
4
7 7 i O R & *(x) which is deter-

Fig. 2 mined by the given for-

mula on the interval (— T, 7r) (see fig. 2)". It is assigned its Fourier series, namely

' A periodic continuation of the function f (x) = 1/ 3 X from the interval (— T, T ) onto the set of all reals.
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(for the case 2/ =2x thatis/ =)

fH(x) ~ &+i(an cosnx+b, sinnx).

n=1

The function f*(x) is odd one, and so we take Fourier coefficients in the form (18),

a,=0,a, =0,
o 2 1" u=x  dv=sinnxdx
= — 1 = — e i = 1 =
b, ﬁ:').f(x)smnxdx _ 3‘([xsmnxdx du=dr v=——cosnx
n
2 1 o1 2 1. I 2cosnzw
== | —=(xcosnx +—Jcosnxdx =——| —mcosnm+—sinnx| |=- :
3r\ n o 1% 37mn h 0 3n

The function f*(x) satisfies all the conditions of Dirichlet theorem (it is boun-
ded by the numbers — /3, — /3 and increases on the interval (-7, 7)) and is con-
tinuous on the set of all real numbers excepting the points x =27k, k € Z. So its Fou-
rier series converges to f (x) at any point x # 27k, k € Z . In particular it converges

to the function f(x)=1/3x on the interval (— 7z, ), that is

0 n+l1
z (_ 1) sin zx.

Vxe(-r, ) %xz—zicos—nﬁsinnxz—gg%sinnxz ,

375 nm

w N

n=1
The sum of Fourier series at the points + 7 equals 0. For the point x = 7 we can

reasen as follows:

S(e) =3 (7 (r=0)+ £ (x +0)= (£ =0)+ - 40)= 3 L2 ) 0
by analogous way we get
S n) =2 -0 £ x+0)= 2 (-0 e m+0) =1 La+dem) -0

Ex. 3. Let be given a function

1 on (-7,0),
flx)= ix—2 on [0,7r1
T

Expend it into Fourier series.
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r
5 % — . 0 | ' /

74 - I x

2
Fig. 3

Let's consider the 27 -periodic function f*(x) which is determined by the gi-
ven formula on the interval (— T, 7r] (fig. 3). It is assigned [it is associated with] its

Fourier series (12), (13) (for the case 2/ =27 that is/ = ). Namely

S (x) ~ %+i(an cosnx + b, sinnx)
n=1

where
a, = 1 Jf(x)dx, a, = 1 Jf(x)cosnxdx, b, = 1 Jf(x)sin nxdx .
T - T - T -7

The function f(x) is given by different formulas in two different intervals (- 7, 0),

[0, 7], and therefore we take the integrals over (-7, 7] as the sums of integrals over

(- 7,0) and [0, z].

o= [ s = ] rtop o= e (2o -

- 0
1 i 1 3 7’ 1
=—|Xx =—|\r+——-27 |=—=;
T 0 T T 2 2

0 2
+(i-x——2xj
o\ 2

s 0 b4
a, _1 jf(x)cosnxdx —l(‘[l-cosnxdx+‘[(3x—2jcosnxdxj =
T —r 0

T T

0
+l((3x—2j sinnxj
. n\\rm

uzéx—Z dv = cos nxdx 1 [1
_ T

T

—sinnx
n

— . S
duzidx y =—sin nx a
T n

0
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3 3 .
= e (cosnn—l)zﬁ((— 1) —1)

T

—ijsin nxdxj = ?2’ Jsin nxdx = icos nx
0

22
s, mwn wn

0

b4 0 b4
b, L If(x)sinnxdx—l(]l-sinnxdx+j(ix—2jsinnxdxj =
7Z'_ﬂ T —r 0 4

3

Uu=—x-2 dv=sinnxdx 1 1 O 1((3 .
T
= 3 1 =—[——cosnx ——((—x—2}cosnxj +
du="dx v=——cosnx] T\ " =z M\ 0
T n

+ijcosnxdxj = l(—l(l —COS(—I’lﬂ'))—l(COSI’lﬂ' +2)+ 3
0

)

The function f*(x) satisfies the conditions of Dirichlet theorem (it's bounded

-sinnx
n |\ n n n
1 3
—(~1+cosnm —cosnw—2)=——.
n n

by the numbers -2 and 1, is constant on the interval [— T, O] and increases on the in-
terval [~ 7, z]). In addition it's continuous on the set of all real numbers excepting the
points x =27k, k € Z . Its Fourier series converges to f *(x)at any pointx #2nk, ke Z.

In particular it converges to the given function f(x) on the union of intervals (- 7, 0)

and (0, ], that is

Vx e(~7,0)U(0, 7] f(x):i+g( 3 ((—1)”—1)cosnx—isinnxj.

2.2
wn mn

The value of the sum of Fourier series at the discontinuity point x=0
1

SO)=2 70+ f(+0) = (14 (-2) == = 1(0)

It doesn't coincide with the value f(0)=—2 of the function f(x) at this point.
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Series: main terms

1. AOCOJOTHO CXO-
JALIUICS Pl

2. buHOMManbHBIN
pan

3. T'apmoHuueckuii
pan

4. T'eomerpuueckas
nporpeccus

5. HocrarouHoe yc-
JIOBUE CXOJIMMOCTH

psna

6. 3HAKOIIOJIOKH-
TEJBHBIN P, PsIA C
MOJIOKUTEIBHBIMHU
YyJeHaMHu

7. 3HaKouepenyro-
LIANCS P

8. 3HameHarTelnn re-
OMETPUYECKOH IPO-
rpeccuu

9. HnTerpanbHblii
MPU3HAK CXOJAUMOC-
TH

10.huTepBan cxo-
JMMOCTH CTETIEHHO-
ro psnaa

11.UccnenoBath
psin Ha (abCoIOT-
HYI0, YCJIIOBHYIO)
CXOAUMOCTD

SERIES: main terms (RUEtr)

AOCOIOTHO 301K-
HUM P

binoMHuit psig
["apmoHiyHUi psin

I'eomerpuuna npor-
pecis

JlocTaTHs 03HaKa
301KHOCTI pAy

3HaKOI0IaTHUN

pAan, pan 3 J0AaTHU-
MH YJICHAMHU

3HAKOIMOYEPEKHUIN
[3HaKOMEepEeMI>KHUMA,
3HAKO3MIHHUM, ajlb-
TEPHYIOUUH | P
3HaMEHHUK F€OMET-
PUYHOI ITporpecii

[nTerpanbua o3Haka
301KHOCTI

InTepBai 301kHOCTI
CTETICHEBOTO PS1Y

Hocniautu psn Ha
(abcontoTHy, YMOB-
HY) 301KHICTb

Absolutely convér-
gent séries

Binoémial séries
Harmonic séries

Geométric(al) prog-
réssion

Sufficient test [cri-
térion, pl critéria]
for/of convérgence
of a séries

Séries with positive
terms, positive term
séries

Alternating séries

Ratio [common ra-
tio, quotient] of a
geométric(al) prog-
réssion

Integral test [crité-
rion, pl critéria] for
conveérgence

[nterval of convér-
gence of a power
séries

Test [invéstigate,
examine] a séries
for (absolute, condi-
tional) convérgence

"@ebsslu:tly, “a&b-
salju:tl;, kan’vs:-
dzont, “s1ari:z

bar nsumial, “sis-

ri:z

ha: "mpnik, “s1s-
ri:z

d319 “metrik(l),
prauv’ grefn  [pro-
“gre [n]

sa fifnt, test, krai-
“trorron, kra1r tis-
ra, kan’v3s:dzans,
"s19ri:z

“s19ri:z, “pbzativ,
3:m

“pltanertin,
“s19ri:z

“reifiau, “koman,
“kwau/nt, d31o-
“metrzk(l), prau-
“grefn

“1ntigral, test,
krar“trarian, krai-
“tIario, kon v3:-
dzons

“1ntavl, kanv3:-
dzons, “pava, “sia-
ri:z

test, 1n’vestigerit,
19, zemin, a&bss-
lu:t, kan " difanl,

kan v3:dzans
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Series: main terms

12.Maknopena psij
13.HeoOxomumoe
YCJIOBUE CXOJIUMOC-
TH psiza

14.00mnactb cxoau-
MOCTH

15.06mwuit uien
psana

16.OcraTok psaa
(mocne n-ro ujieHa)

17.1Tpusnak Jlanam-
oepa

18.1Ipusnax Jleit0-
HUILA

19.11pu3nak cpas-
HeHus (I pSAJIOB C
MOJIOKUTEJIbHBIMU
YJICHaAMU)

20.Pagnyc cxonu-
MOCTH CTEIIEHHOTO
psna

21.Pa3noxeHune
(GyHKIUU B P

22.Pa3noxuth QyH-
KIIHMIO B PsIJT

23 .PackinaapiBaTbCs
B Pl

24 Pacxoguthces (0
psize)
25.Pacxogsmuiics
pAn

26.Psan abcomroT-
HBIX BEJIUYHH Yje-

Makxiiopena psn

HeoOxigHa o3Haka
301KHOCTI pAy

O0acTp 301KHOCTI

3araJIbHUI YIEH psi-
Ay

3anumiok psay (Tic-
JIsl n-TO YJICHA)

Oznaka [lamamOepa
Oznaka JleiiOHina
O3Haka NOpIBHIHHS

(nns psniB 3 qoaaT-
HUMH YJICHAMH )

Paniyc 361xHOCTI
CTCTICHEBOTO PSITY

Po3BuHeHHs QyHK-
1ii B psif

Po3BunyTH (hyHK-
IO B Psif

PosBuBarucs [po3-
KJIaJIaTUCS | B psIA

Po3z6iratucs (mpo

psin)
Po306ixHMit psin

Ps abcomroTHUX
BEJIMYMH YJICHIB

Maclaurin(’s) séries
Nécessary test [cri-
térion pl critéria]
for/of convérgence
of a séries

Domain of convér-
gence

Géneral term of a
séries

Remainder [n-th re-
mainder] of a séries
(after the n-th term)
D’Alembert’s test
[critérion]

Leibniz” test [crité-
rion]

Compérison test
[critérion, pl crité-
ria] (for séries with
positive terms)

Radius of convér-
gence of a power
séries
Expansion/devélop-
ment of a finction
in/into a séries

Expand/devélop a
finction in/into a
séries

Be expéandable/de-
vélopable in/into a
séries

Divérge (about a sé-
ries)

Divérgent séries

Séries of moduli of
terms of a séries

"sI9ri:z
"nesasri, ‘'nesasa-
rI, test, krar tis-

rran,kra1” tiario,
kan v3:dgans, sia-
ri:z

da “mein,davu-
“mein, kan v3:-
dzans

“dzenral, t3:m, s1a-
ri:z

rr” meinds,
“s19ri:z, a:fta, t3:m

test, krar” trarisan
test, krar” trarisan

kam " paerisn,test,
krar“trarian, krai-
“tIario, " s19ri:Z,
"pbzativ, t3:m
“rerdias, kan v3:-
dzons, “pava, “sia-
ri:z

1k “spanfn, d1’ve-
lapmant, “fankfn,
"s19ri:z,

1k “spaend, d1i’ve-
lap, “fankfn, paus,
"s19ri:z

1k “spaendabl, di-
“velapabl, “s1ari:z

da1’v3:d3, “siari:z
da1’vs:dzant, sia-
ri:z

“s1ari:z, “mpdjulai,
t3:m, a:bitrarz, "ri-
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Series: main terms

HO psJia ¢ IPOU3-
BOJIbHBIMH [BELIECT-
BEHHBIMU | 4JIeHAMU
27.CTeneHHoi psaj
28.CymmMma psana
29.CxonumocTs ps-
na

30.Cxonuthcs (ab-
COJIFOTHO, YCIIOBHO)
(0 psne)

31.Cxongmmiics
pAn

32.Teitnopa psin
33.Touka cxoauMoO-
CTH

34.YcnoBHO cxoas-
LIUAKCS PAX
35.OyHKIIMOHAIb-
HBIW Psif

36.Dypoe psn
37.HacTuuHas CyM-
Ma psina (repBasi,
BTOpasi, TPEThA, n-
as)

38.HucnoBoil psia

pALy 3 TOBUILHUMH
[miicHUMHU | YsIeHa-
MU

CreneHeBuil psia
Cyma psany
301KHICTb pALY

36iratucs (abco-
JIOTHO, YMOBHO)

(po psi)

301KHUH psif

Tewnopa psn
Touka 301KHOCTI

YMOBHO 301 kHUT
pAn
DyHKIIOHAIBHUI
pAn

Oyp"e psan
YacrtkoBa cyma ps-

ny (mepima, apyra,
TpETs, n-Ha)

HucnoBui psij

with arbitrary [réal]
terms [of a plus-
and-minus séries]
Power séries

Sum of a séries
Convérgence of a
séries

Convérge (abslute-
ly, conditionly)
(about a séries)

Convérgent séries

Taylor(’s) séries
Point of convérgen-
ce

Conditionally con-
veérgent séries
Function(al) séries,
séries of flnctions
Fourier('s) séries
Partial sum of a

séries (first, second,
third, n-th)

Numérical/nimber
séries

al, plas @&nd (and,
an, n) “mainas

“paua, “siariiz
SAmM, ~SIari:z

kan v3:dgans, sia-
ri:z

kan v3:d3, “®bsa-
lu:tlt, “@bsalju:tl,
kan difanl1, “sia-
ri:z

kan v3:dgont, s1ia-
ri:z

“s19ri:z
kan“v3:dgans,
“point
kan“difanli, kan-
“v3:dgont, “siari:z
“fankfn, “fankfanl,
“fankfnal, “fank/nl
"s19ri:z

pa:fl, snm, “siari:z,
f3:st, “sekand, 03:d,

nju merikl, “nam-
ba, “siori:z



1. Absolutely con-
vérgent séries

2. Alternating sé-
ries

3. Be expandable/
devélopable in/into
a séries

4. Binomial séries

5. Comparison test
[critérion, pl crité-
ria] (for séries with
positive terms)

6. Conditionally
convérgent séries

7. Convérge (abslu-
tely, conditionly)
(about a séries)

8. Convérgence of
a séries

9. Convérgent se-
ries
10.D’Alembert’s
test [critérion]
11.Divérge (about a
séries)
12.Divérgent séries
13.Domain of con-
vergence

14.Expand [devé-
lop] a function in/
into a séries

15.Expéansion/devé-

SERIES: main terms (EtrRU)

“&ebsslu:tlt, a®bsa-
lju:tlz, kan v3:-
dzont, “s1ari:z

“pltanertin, “siari:z

1k “spaendabl, di-
“velapabl, “s1ari:z

bar nsumial, “sis-

ri:z

kom peaerisn, test,
krar“trarian, krai-
“tIario, “s19ri:Z,
"pbzativ, t3:m
kan“difanli, kan-

“v3:dgont, “siari:z
kan v3:d3, “@bsa-
lu:tlt, “@bsalju:tl,
kan difanli, “sia-
ri.z

kan v3:dgans, sia-
ri.z

kan v3:dgant, s1a-
ri.z

test, krar” trarisan

dar’v3:d3, “siari:z

da1’v3:dzant

da “mein,dsu mein
kan v3:dzans

1k “spaend, d1i’ve-
lap, “fankfn, paus,
“s19ri:z

1k “spanfn, d1’ve-

AOCOIOTHO CXOIs-
LIANCS P

3HaKo4YepeAYOIIUI
csl psif

PackmaneiBathbes B
pan

buHOoMuMaNbHBIN Pl

[TpusHak cpaBHEHUs
(nJ1s psAZIOB € MMOJIO-
KUTEITBbHBIMU YJie-
HaMH)

Y C10BHO CXO/151-
LIANCS P
Cxonutbcs (abco-
JIIOTHO, YCJIOBHO) (O
psize)

CxomuMocTs psiaa

Cxopsiuiics psn

[Tpu3znak Jlanam6Ge-
pa

Pacxonutbcs (o psi-
zie)

Pacxonsimuiics psin
O061acTh CXOAUMO-
CTH

Paznoxuth GpyHK-
LU0 B AT

Paznoxenue ¢pyHk-

AOCOIOTHO 301K-
HUM P

3HAKOIMOYEPEKHUIN
[3HaKOMEepEeMI>KHUMA,
3HAKO3MIHHUM, ajlb-
TEPHYIOUUH | P
PosBuBarucs [po3-
KJIQJIaTUCA | B P

binoMHuit psijg

O3Haka NOpIBHIHHS
(nns psniB 3 qoaat-
HUMM YJICHAMH )

YMOBHO 301KHUM
pAn

36iratucs (abco-
JIOTHO, YMOBHO)

(po psin)
301KHICTD ALY
301KkHUN psif

Oznaka [lamamOGepa

Poz6iratucs (mpo

psin)
Po36ixHMit psia

O0acTp 301KHOCTI

Po3BunyTH (hyHK-
IO B Psif

Po3BuHeHHs QyHK-
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Series: main terms

lopment of a finc-
tion 1n/into a séries

16.Fourier('s) séries
17.Function(al) sé-
ries, séries of finc-
tions

18.Géneral term of
a séries
19.Geométric(al)
progréssion

20.Harmonic séries

21.Integral test [cri-
térion, pl critéria]
for convérgence

22.Interval of con-
vérgence of a power
séries

23.Leibniz’ test
[cri-térion]
24.Maclaurin(’s) sé-
ries

25.Nécessary test
[critérion pl critéria]
for/of convérgence
of a séries

26.Numérical/nam-
ber séries

27.Partial sum of a
séries (first, second,
third, n-th)

28.Point of convér-
gence

29.Power séries

30.Radius of con-
vérgence of a power
séries

lapmant, “fankfn,
"s19ri:z,
“s1ari:z
“fankfn, “fankfanl,
“fankfnal, “fank/nl

“dzenral, t3:m,
“s19ri:z

d319 “metrik(l),
pravgrefn  [pro-
“grefn]

ha: “monik, " s1ari:z
“1ntigral, test,
krar“trarian, krai-
“tIario, kon v3:-
dzans

“1ntavl, kanv3:-
dzons, “pava, “sia-
ri.z

test, krar” trarisan

" s19ri:z

"nesasri, ‘nesass-
test, krar tis-
risan, krar”traris,
kanv3:dgans,

rI,

“s1ari:z
nju merikl, “nam-

ba, “siori:z

f3:st, “sekand,
03:d, pa: fl, sam,
“s19ri:z
kanv3:dgans,
“point

“paua, “siariiz
“rerdias, kan v3:-
dzons, “pava, “sia-

LIUU B Pl

dypbe psg
OYHKIMOHAIBHBIN
pAan

OO6muit wieH psna

['eomerpuueckas
nporpeccus

I"apmonnueckuit
pAan
NHTerpanbsHbii
MPU3HAK CXOAUMO-
CTHU

HNHuTtepBan cxoqumo-
CTHU CTEIIEHHOIO psi-
na

[Tpu3znak JleliOHuma
Maxiiopena psn

Heob6xoaumoe yc-
JIOBHE CXOJAMMOCTH
psana

YHucnoBou psan

YacTuyHas cymma
psina (mepBas, BTO-
pasi, TpeThs, n-as)

Touxka CXOAUMOCTH

CreneHHoOM psif
Paguyc cxonumo-
CTH CTEIIEHHOTO
psna

1ii B psif

Oyp"e psan
OyHKIIOHAIBHUI
pan

3araJIbHU YJIEH psi-
Ay

['eomeTpuyuna npor-
pecis

["apmonHiyHUi psin

[nTerpanbua o3Haka
301KHOCTI

InTepBain 301kHOCTI
CTETICHEBOTO PSIY

O3naka JleliOHima
Makxiiopena psn

HeoOxigHa o3Haka
301KHOCTI pAy

HucnoBui psij

YacrtkoBa cyma ps-
ny (mepiua, apyra,
TpeTsl, n-Ha)

Touka 301KHOCTI

CreneHeBuil psia

Paniyc 361xHOCTI
CTCTICHEBOTO PSTY
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Series: main terms

31.Réatio [common)
ratio, quotient] of a
geométric(al) prog-
réssion

32.Remadinder [n-th
remainder] of a séri-
es (after the n-th
term)

33.S¢éries of moéduli
of terms of a séries
with arbitrary [réal]
terms [of a plus-
and-minus séries]

34.Séries with posi-
tive terms, positive
term séries

35.Sufficient test
[critérion, pl crité-
ria] for/of convér-
gence of a séries

36.Sum of a séries
37.Taylor(’s) séries
38.Test [invéstigate,
examine] a séries
for (absolute, condi-
tional) convérgence

ri.z

"koman, “reifiau
“kwau/nt, d31o-
“metrzk(l), prou-
“grefn

r1” meinds, “sIari:z,
a:fto, t3:m

“s1ari:z, “mpdjulai,
"negativ, t3:m,
“a:bitrar, “rial,
plas @&nd (and, an,
n) “mainas
“s19ri:z, “pbzativ,
3:m

sa fifnt, test, krai-
“trorron, kra1r tis-
rra, kan’v3s:dgans,
“s19ri:z

SAmM, ~SIari:z
"s19ri:z

test,
Ig za@miIn, SsIari:z,
“&ebsslu:t, kean dI-
fonl, kan"v3:dgans

In " vestigerit,

3HaMeHaTelb reo-
METPUYECKOU MPOT-
peccun

Ocrarok psina (1o-
CJI€ 1-TO YJieHa)

Psan a0comroTHBIX
BEJIMYMH YJICHOB
pszia ¢ TPOU3BOJIb-
HBIMU [BEIIECTBEH-
HBIMH | YJIEHAMU

3HAKOIOI0KHUTEIb-
HBIU psAl, pAAX C MO-
JIO)KUTEJIBHBIMU
YIeHaMU
JlocTaTouHOE yCIIO-
BHUE CXOAUMOCTHU

psna

CymmMma psana
Tewnopa psn
UccnenoBats psipg
Ha (a0COJIIOTHYIO,
YCJIOBHYIO) CXO/IU-
MOCTb

3HaMEHHUK F€OMET-
PUYHOI ITporpecii

3anuiok psay (mic-
JIsL n-TO YJICHA)

Psn abcomoTHIX
BEJIWYMH YICHIB
pSay 3 TOBUILHUMHU
[niicHUMHU | uIeHa-
MH

3HaKOI0IaTHUN

pAan, pan 3 J0AaTHU-
MH YJIEHAMH

JlocTaTHs 03HaKa
301KHOCTI pAy

Cyma psny
Tewnopa psn
Hocniautu psan Ha
(abcontoTHy, YMOB-
HY) 301KHICTb
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