<u>Исследование проблем кинематики, динамики, прочности и надежности машин и их узлов</u>

УДК 621.452.32

ОБОСНОВАНИЕ ВЫБОРА ДИНАМИЧЕСКОЙ МАТЕМАТИЧЕСКОЙ МОДЕЛИ КОЛЕБАНИЙ УСТАНОВОК РЕАКТИВНО-ТУРБИННОГО БУРЕНИЯ

Петтик Ю.В.

(ДонНТУ, г.Донецк, Украина)

В практике шахтного строительства широко используется специальные способы бурения шахтных воздухоподающих стволов и скважин большого диаметра (до 5,0 м и глубиною до 800-1000 м). Одним из самых распространенных методов бурения является реактивно-турбинное бурение (РТБ), основанное на использовании стандартизованного нефтяного оборудования. При разработке конструкции агрегатов РТБ и технологии бурения основное внимание уделялось вопросам кинематики и геометрии стволов и скважин, а проблема динамики бурового оборудования (с учетом распределенных параметров), работающего при ударных процессах, практически не рассматривалась в виду сложности математического описания буровой установки [1].

Известно, что чем сложнее математическая модель, описывающая процесс, за счет учета большего количества конструктивных параметров, внутренних и внешних связей и воздействий, тем точнее она отражает и описывает реальный «механизм» и процесс работы реального оборудования. Однако, каждый из дополнительных факторов и параметров, составляющих математическую модель, усложняет ее, при этом усложняются расчетные и функциональные зависимости. Это приводит к трудностям при проведении инженерных расчетов или даже к невозможности их реализации в силу ряда факторов (отсутствие методики решения задач определенного класса, длительность вычислительного процесса при реализации модели с использованием компьютерных технологий).

Однако, при принятии разумных допущений и уменьшении количества учитываемых факторов, математическую модель можно заметно упростить, при сохранении ее высокой точности. Это позволит получить удобные инженерные зависимости для проектирования оборудования и анализа динамических процессов [2-5].

Целью данного исследования является выбор оптимальной сложности математической модели для последующего изучения динамических процессов и напряженно-деформированного состояния установок РТБ.

Характеристика установки РТБ.

Установки РТБ (рис.1 а), б)) состоят из комплекса оборудования, используемого для бурения нефтяных и газовых скважин, в котором изменены и добавлены отдельные элементы. Схема сооружения скважины способом РТБ приведена на рис. 1 в), г).

В качестве бурильной колонны используются стандартные бурильные трубы 1 наружным диаметром 168 мм с замковыми соединениями 2. Забойный агрегат (см. рис. 1 б)) установок РТБ состоит из траверсы 3, размер которой определяет диаметр бурения. К ниппелям 4 траверсы присоединены 2-4 наружных корпуса турбобура 5 (гидравлических турбин), на валах которых установлены шарошечные долота 6, диаметром значительно меньшими диаметра скважины. На корпусах турбобуров расположены утяжелители 7, обеспечивающие создание осевой нагрузки на забой. Таким образом,

агрегаты РТБ представляют собой «монолитную» конструкцию, в которой 2-4 наружных корпуса турбобура жестко соединены между собой [6].

Промывочная жидкость подается насосами с поверхности через вертлюг 9, по бурильной колонне и через каналы в траверсе поступает к турбобурам и приводит их во вращение. Шарошечные долота, вращаясь вокруг своей оси и вступая в контакт с забоем 10, совершают планетарное движение вокруг вертикальной оси агрегата, теорети-

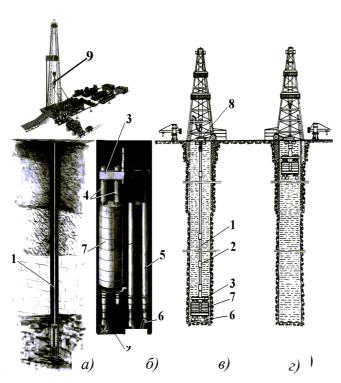


Рис. 1. Общий вид буровой установки РТБ-3200 и схема сооружения ствола методом реактивнотурбинного бурения:

а) Буровая установка РТБ-3200; б) забойный агрегат; в) схема сооружения ствола методом РТБ – бурение; г) спуско-подъемные операции.

чески совпадающей с осью скважины, обрабатывают всю площадь забоя. Поток промывочной жидкости, выйдя из отверстия в долоте, омывает забой и поднимается по стволу на поверхность, вынося разбуренную породу в отстойник.

Наиболее полная расчетная схема установки РТБ с распределенными параметрами и сосредоточенными массами (дискретными) приведена на рис. 2 (схема № 1).

Основные элементы буровой системы РТБ, определяющие параметры собственных колебаний бурового става являются: буровая колонна с погонной массой m_1 , турбобур с погонной массой m_2 , масса талевой системы M_1 , с жесткостью c_1 , сосредоточенная масса бурового агрегата с утяжелителями M, сосредоточенная масса бурового инструмента (долота) M_2 на упругой связи с забоем. Жесткость забоя

обозначена коэффициентом жесткости c_2 . Уравнение динамических перемещений поперечных сечений упругого стержня при продольных колебаниях имеет вид [4]

$$u(x,t) = u(x) \cdot \sin(\omega t + \mu)$$
,

где ω — частота собственных колебаний, $\omega = k \cdot c^* = k \cdot \sqrt{\frac{EF}{m}}$, k — волновое число; c^* — скорость волны деформации; E — модуль Юнга; F — площадь поперечного сечения стержня (трубы).

Уравнение деформированного стержня имеет вид

$$u(x) = u_0 \cdot \cos kx + \frac{N_0}{kEF} \cdot \sin kx, \qquad (1)$$

где u_0 и N_0 – начальные параметры, соответственно перемещение и внутреннее усилие в начале координат.

Уравнение (1) нужно подчинить верхним граничным условиям, при x_1 = l_1 для верхнего участка получаем

$$N_1(l_1) = P_{\text{M},1} - c_1 u_1(l_1) \,. \tag{2}$$

Здесь сила инерции массы M_1

$$\begin{split} P_{\mathrm{M},1} &= -M_1 \cdot \ddot{u}(l_1) = M_1 \omega^2 u_1(l_1) = \frac{M_1 k_1^2 E F_1}{m_1} u_1(l_1) = \xi_1 k_1 \, E F_1 u_1(l_1) \,, \end{split}$$
 где $\xi_1 = \frac{M_1}{m_1 l_1} \,.$

При этом граничное условие (2) принимает вид

$$N_1(l_1) = (\xi_1 k_1 E F_1 - c_1) u_1(l_1)$$

$$C = \frac{c_1 \cdot l_1}{l_1} \quad \lambda_1 = k_1 l_1 \text{ is a feature}$$

$$(3)$$

Введем замену $\bar{c} = \frac{c_1 \cdot l_1}{EF_1}$, $\lambda_1 = k_1 l_1$ и обозна-

$$\mathbf{q}_{\text{ИИМ}} \alpha_{1} = \frac{(\overline{c}_{1} - \xi_{1}\lambda_{1}^{2}) - \lambda_{1} \mathbf{tg}\lambda_{1}}{\lambda_{1} + (\overline{c}_{1} - \xi_{1}\lambda_{1}^{2}) \mathbf{tg}\lambda_{1}},$$

тогда (3) примет вид

$$N_1(l_1) = -u_1(0) \alpha_1 EF_1 k_1$$

Аналогично рассматриваются нижний участок, т.е. турбобуры и долота, где уравнение деформированного стержня будет иметь вил

$$u_{2}(x_{2}) = u_{2}(0) \cdot \cos k_{2}x_{2} + \frac{N_{2}(0)}{k_{2}EF_{2}} \cdot \sin k_{2}x_{2}$$
 (5)

Уравнение (5) также подчиняем граничным условиям, но при $x_2 = l_2$

$$N_2(l_2) = P_{\text{M},2} - c_2 u_2(l_2)$$

аналогично получим

$$N_2(l_2) = -u_2(0) \alpha_2 E F_2 k_2$$
, (6)

где

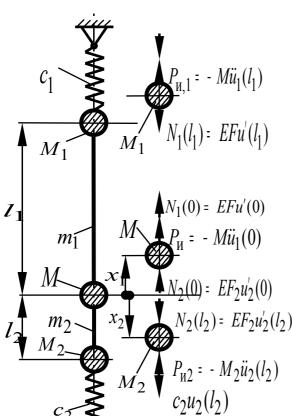


Рис. 2. Расчетная схема (№ 1) установки РТБ

$$\alpha_2 = \frac{(\overline{c}_2 - \xi_2 \lambda_2^2) - \lambda_2 tg \lambda_2}{\lambda_2 + (\overline{c}_2 - \xi_2 \lambda_2^2) tg \lambda_2}.$$
 (7)

Теперь нужно выполнить условие стыковки участков, т.е. следует рассмотреть условие равновесия массы M (при $x_1 = x_2 = 0$; и $u_1(0) = u_1(0) \Rightarrow u_1(0) = u_2(0) = u_0$):

$$N_1(0) + N_2(0) = P_{\rm W} \,, \tag{8}$$

где $N_1(0) = EF_1 \cdot u_1'(0)$, $N_2(0) = EF_2 \cdot u_2'(0)$

$$P_{\rm M} = -M \cdot \ddot{u}_1(0) = M\omega^2 u_1(0) = \frac{M_1 k_1^2 E F_1}{m_1} u_0 = \xi \lambda k_1 E F_1 u_0$$
, здесь $\lambda = kl$.

Из равенства частот колебаний $\omega=\omega_1=\omega_2$ и зависимости $m_1=F_1\gamma$, где γ - плотность стали; $\omega=k_1\cdot\sqrt{\frac{EF_1}{m_1}}=k_2\cdot\sqrt{\frac{EF_2}{m_2}}$ или $k_1\cdot\sqrt{\frac{E}{\gamma}}=k_2\cdot\sqrt{\frac{E}{\gamma}}$, следует, что $k_1=k_2=k$.

Из равенства (3) и (6) и с учетом того, что $k_1 = k_2$ уравнение (8) примет вид

$$\alpha_1 + \frac{F_2}{F_1} \alpha_2 = \xi \lambda_1. \tag{9}$$

Так как $\lambda_2 = k_2 l_2 = k l_2 = k l_1 \frac{l_2}{l_1} = k \bar{l}$, уравнение (9) примет вид

$$\frac{\overline{c}_{1} - \xi_{1}\lambda^{2} - \lambda tg\lambda}{\lambda + (\overline{c}_{1} - \xi_{1}\lambda^{2})tg\lambda} + \frac{F_{2}}{F_{1}} \cdot \frac{\overline{c}_{2} - \xi_{2}\lambda^{2}\overline{l}^{2} - \lambda \overline{l}tg(\lambda \overline{l})}{\lambda \overline{l} + (\overline{c}_{2} - \xi_{2}\lambda^{2}\overline{l}^{2})tg\lambda \overline{l}} - \xi\lambda = 0.$$

$$(10)$$

Трансцендентное уравнение (10) при замене $\lambda \bar{l} = \lambda^*$ можно привести к виду (11):

$$tg\lambda = \frac{\overline{c}_{1} - \lambda \left(\xi \lambda - \frac{F_{2}}{F_{1}} \cdot \frac{\overline{c}_{2} - \lambda^{*} tg\lambda^{*}}{\lambda^{*} + \overline{c}_{2}\lambda^{*}}\right)}{\lambda + \overline{c}_{1} \left(\xi \lambda - \frac{F_{2}}{F_{1}} \cdot \frac{\overline{c}_{2} - \lambda^{*} tg\lambda^{*}}{\lambda^{*} + \overline{c}_{2}\lambda^{*}}\right)}.$$
(11)

Решение уравнения (10), как наиболее полной математической модели, учитывающей наибольшее количество элементов и параметров (описывающей 1 схему рис. 2), произведем в среде Mathcad 8, при этом определяем значение первых 10-ти собственных чисел $\lambda_{(i)} = \{\lambda_1, \lambda_2, ... \lambda_{10}\}$, значения, которых для соответствующих глубин приведены в табл. 1.

Однако при дальнейшем использовании предложенной математической модели для анализа ударных процессов, задача становиться весьма сложной и использование метода Фурье станет весьма затруднительным. Поэтому, произведем упрощение полной математической модели (схема № 1) и дадим оценку упрощенных моделей. Произведем упрощение модели в несколько этапов.

Таблица 1. Значения собственных чисел частотного уравнения (11) (сх. № 1 рис. 2)

Номер п/п собствен- ного чис-	Значения собственных чисел, $\lambda_{(i)}$ для соответствующих глубин бурения, L , м					
ла, $\lambda_{(i)}$	50	100	200	300	500	700
1	2	3	4	5	6	7
1	0,515	0,851	1,397	1,829	2,382	2,644
2	0,803	1,518	2,640	3,485	4,087	4,680
3	3,227	3,318	3,610	4,570	6,443	6,870
4	6,326	6,370	6,465	6,591	7,643	9,446
5	9,453	9,483	9,542	9,609	9,806	10,732
6	10,372	12,610	12,654	12,700	12,811	12,999
7	12,588	15,743	15,778	15,814	15,894	15,997
8	15,726	18,878	18,908	18,937	19,001	19,075
9	18,864	20,742	22,041	22,066	22,119	22,178
10	22,004	22,017	25,176	25,198	25,243	25,293

Первая упрощенная схема (схема № 2, рис. 3 а)). Дадим оценку соотношения жесткости забоя и жесткости талевой системы, при этом допустим, что жесткость забоя велика по сравнению с жесткостью остальных элементов. Произведем численную оценку этого допущения.

Талевая система состоит из кронблока, талевого блока, подъемного крюка, стального каната. На верхней площадке буровой вышки устанавливается кронблок

Подвижный талевый блок соединяется с кронблоком талевым канатом, один конец которого крепится к барабану лебедки и называется ходовым (ведущим), а второй – через приспособление к основанию вышки, который крепится неподвижно и называется неподвижным концом. К талевому блоку присоединяется крюк, на котором подвешивается на стропах вертлюг. Число шкивов кронблока в одной системе всегда на один больше, чем в талевом блоке, а число ветвей каната в оснастке четное.

В буровых установках грузоподъемностью 200 т используют число шкивов 5х5 и 5х6, - первая цифра показывает число канатных шкивов талевого блока, а вторая – число канатных шкивов кронблока [6]. Для буровой установки РТБ 3200 число шкивов 5х6.

Так как высота расположение талевой системы от устья ствола изменяется в диапазоне от 31 до 36 м, то жесткость талевой системы c_1 = c_{mc} изменяется от величины 1,64·10⁷ Н/м при начале каждого рейса бурения, когда ведущая труба находится в

верхнем положении до 1,43·10 7 H/м при нижнем расположении ведущей трубы. В расчетах используем l_{mc} = 33 м , таким образом жесткость талевой системы определяется по зависимости

$$c_1 = c_{mc} = \frac{n \cdot E_K \cdot F_K}{l_{mc} + \frac{l_{J.}}{n}} = \frac{10 \cdot 1,6 \cdot 10^{11} \cdot 3,58 \cdot 10^{-4}}{33 + \frac{40}{10}} = 1,55 \cdot 10^7 \text{ H/M},$$

где n - число несущих струн (ветвей) каната, n = 10; E_{κ} - модуль упругости материала каната, E_{κ} = $1.6\cdot 10^{11}$ Па ; F_{κ} - площадь сечения каната Ø 32 мм, ; l_{mc} - длина каната талевой системы от верхнего шкива до нижнего, l_{mc} = 33 м; l_{π} - длина каната от барабана лебедки до верхнего талевого блока, l_{π} = 40 м.

При этом жесткость забоя при использовании новых долот и контакте только 5ти зубьев составит [7]

$$c_2=c_{\mathit{3a6}}=\frac{E_n(a+b)}{2(1-\mu^2)}\cdot z=\frac{0.18\cdot 10^{11}(6\cdot 10^{-3}+20\cdot 10^{-3})}{2(1-0.1^2)}\cdot 5=118\cdot 10^7\text{ H/м},$$
 где E_n - модуль упругости породы, $E_n=0.18\cdot 10^{11}$ Па; $\mathcal A$ - ширина нового зуба по

где E_n - модуль упругости породы, E_n = 0,18·10¹¹ Па; \mathcal{A} - ширина нового зуба по окружности вершин, a = 4 мм; b - длина нового зуба по окружности вершин , b = 22 мм; μ - коэффициент Пуассона, μ = 0,1; z - число зубьев взаимодействующее с забоем, принимаем z = 5.

Нужно отметить, что жесткость забоя практически на два порядка выше, чем жесткость талевой системы, а после 5-10 часов работы на забое, зуб изнашивается по высоте на 30...40 % и более, при этом жесткость возрастает до

$$c_{3a\delta} = \frac{0.18 \cdot 10^{11} (10 \cdot 10^{-3} + 22 \cdot 10^{-3})}{2(1 - 0.1^2)} \cdot 5 = 2.9 \cdot 10^9 \text{ H/m},$$

т.е. повышается еще в 2,5 раза.

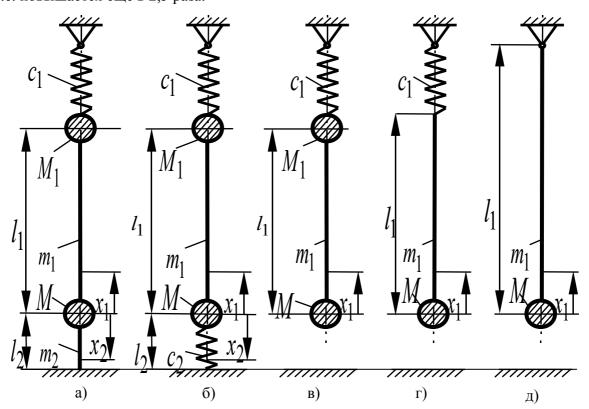


Рис. 3. Упрощение схемы буровой установки РТБ: а)- схема №2; б)- схема №3; в)- схема №4; г)- схема №5; д)- схема №6

Таким образом можно положить, что $c_{3a\delta} >> c_{mc}$. На этом основании принимаем, что c_2 = ∞ по сравнению с c_1 . При этом получаем из (7), что α_2 = 1. Это соответствует схеме № 2, рис. 3 а).

Тогда из уравнения (9) получим, что

$$\alpha_1 + \frac{F_2}{F_1} = \xi \lambda_1$$
 или $\alpha_1 = \xi \lambda_1 - \frac{F_2}{F_1}$.

С учетом этого уравнение (11) сводится к уравнению вида

$$\frac{\overline{c}_{1} - \left(\xi_{1} - \xi_{1} - \frac{F_{2}}{F_{1} \lambda^{*}}\right) \lambda^{2}}{\lambda + \left(1 + \left(\xi - \frac{F_{2}}{F_{1} \lambda^{*}}\right) \left(\overline{c}_{1} - \xi_{1} \lambda^{2}\right)\right)}.$$
(12)

Решая уравнение (12), получаем значения первых трех собственных чисел $\lambda_{(i)} = \{\lambda_1, \lambda_2, \lambda_3\}$. Сводим результаты для глубины бурения L = 300 м в табл. 2.

Вторая упрощенная схема (схема № 3, рис. 36)).

Упрощенную схему № 2, показанную на рис. За), можно заменить, используя то обстоятельство, что внутреннее усилие в турбобуре N_2 = c_2u_2 , где c_2 - жесткость турбобура, а u_2 = $\frac{N_2l_2}{EF_2}$. После преобразований получим, что $\frac{N_2l_2}{EF_2}$ = $\frac{N_2}{c_2}$, откуда следует, что

$$F_2 = \frac{c_2 l_2}{E} \,. \tag{13}$$

Разделив правую и левую часть (13) на F_1 , получим равенство $\frac{F_2}{F_1} = \frac{c_2 l_2}{EF_1} = \overline{c}_2$ или $F_2 = F_1 \overline{c}_2$ и вместо схемы № 2, рис. 3 а), описываемой уравнением (11), можно получить схему № 3, рис. 3 б), описываемую уравнением (14)

$$tg\lambda = \frac{\overline{c}_{1} - \left(\xi_{1} + \xi - \frac{\overline{c}_{2}}{\lambda^{*}}\right)\lambda^{2}}{\lambda + \left(1 + \left(\xi - \frac{\overline{c}_{2}}{\lambda^{*}}\right)\left(\overline{c}_{1} - \xi_{1}\lambda^{2}\right)\right)}.$$
(14)

Аналогично уравнениям (11) и (12), решаем (14) и определяем первые три собственные числа собственных функций $\lambda_{(i)} = \{\lambda_1, \lambda_2, \lambda_3\}$. Сводим результаты вычисления собственных чисел для глубины бурения L = 300 м в табл. 2.

Третья упрощенная схема (схема № 4, рис. 3 в)).

Если продолжить упрощение математической модели, т.е. схемы \mathbb{N}_2 3, рис. 3 б) и положить, что жесткость турбобура не влияет на колебания системы, т.е. $c_2 = 0$, то схема сводится к схеме \mathbb{N}_2 4, рис. 3 в), описываемой уравнением (15)

$$tg\lambda = \frac{\overline{c}_1 - (\xi_1 + \xi)\lambda^2}{\lambda + (1 + \xi(\overline{c}_1 - \xi_1\lambda^2))}.$$
 (15)

Решение уравнения (15), как и для предыдущих схем, сводим в табл. 2.

Четвертая упрощенная схема (схема № 5 рис. 3 г)).

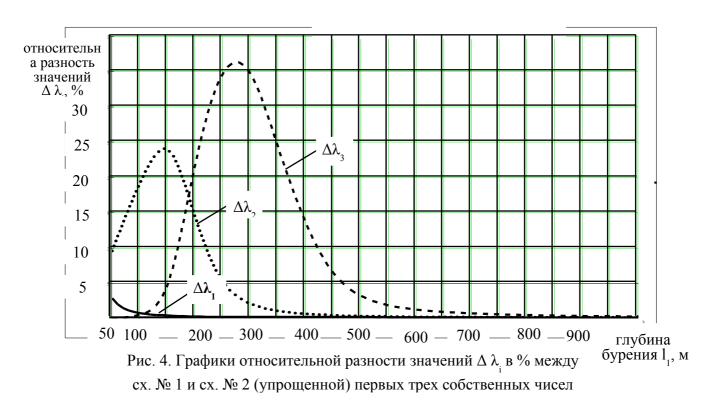
Дальнейшее упрощение модели производим исходя из того, что масса вертлюга и крюкоблока M_1 в 4...6 раз меньше массы агрегата РТБ. Поэтому полагаем, что $M_1 \approx 0$, т.е. $\xi_1 = 0$. Это приведет к новому частотному уравнению (16) и схема установки примет вид схемы № 5, рис. 3 г)

$$tg\lambda = \frac{\overline{c}_1 - \xi \lambda^2}{\lambda + (1 + \xi \overline{c}_1)}.$$
 (16)

Решение уравнения сводим в табл. 2.

Пятая упрощенная схема (схема № 6, рис. 3 д)).

И, наконец, пятая упрощенная схема, схема № 6 получается, если положить, что жесткость талевой системы бесконечно большая, т.е. $C_1 = \infty$. Тогда расчетная схема еще более упрощается и принимает вид схемы № 6, приведенный на рис. 3 д), а частотное уравнение этой схемы будет иметь вид (17)


$$tg\lambda = \frac{1}{\lambda \xi}.$$
 (17)

Решение указанных частотных уравнений (11), (12), (14)-(17) производим для установки РТБ-3200 с параметрами: масса крюкоблока с вертлюгом M_1 = 8,55 · 10^3 кг; масса забойного агрегата M_1 = $3 \cdot 10^4$ кг; масса долот M_2 = $1,1 \cdot 10^3$ кг; погонная масса бурильной трубы m_1 = 36 кг/м и турбобура m_2 = 308 кг/м. Геометрические параметры: площадь поперечного сечения бурильной трубы (при наружном Ø 168 мм и толщине стенки t = 9 мм) F_1 = $4,495 \cdot 10^{-3}$ м 2 ; площадь поперечного сечения турбобура (при наружном Ø 240 мм и толщине стенки t = 10 мм) F_2 = $7,225 \cdot 10^{-3}$ м 2 ; момент инерции сечения бурильной трубы J_1 = $1,425 \cdot 10^{-5}$ м 4 ; EF_1 = $2 \cdot 10^{11} \cdot 4,495 \cdot 10^{-3}$ = $8,991 \cdot 10^8$ H; EF_2 = $2 \cdot 10^{11} \cdot 7,225 \cdot 10^{-3}$ = $1,445 \cdot 10^9$ H , длина турбобура I_2 = 7,12 м .

Глубина бурения l_1 - переменная величина, изменялась от 50 до 1000 м.

Так, на рис. 4 приведены графики, показывающие изменение зависимости относительной разности значений в % первых трех собственных чисел λ_i рассчитанные для схемы № 1 и схемы № 2 (упрощенной схемой). Из рис. 4 видно, что расхождение в

значении $^{\Delta\lambda}{}_i$ между $^{\lambda}{}_i$ для схемы № 1 и схемы № 2 для первой собственного числа $^{\lambda}{}_1$ не превышает 5% на всех глубинах бурения, для второго собственного числа $^{\lambda}{}_2$ погрешность превышает 5% на глубинах 0...233,6 м, при этом максимальное значение $^{\Delta\lambda}{}_2$ = 24% при L = 141,3 M . Для третьего собственного числа $^{\lambda}{}_3$ погрешность превышает 5% на глубинах 151,1...469,4 м, при этом максимальное $^{\Delta\lambda}{}_3$ = 36,3% при L = 272,9 M .

Общий вид расчетных схем, зависимости для определения собственных чисел λ_i , значение первых трех λ для глубины бурения L = 300 м и относительная разность $\Delta\lambda_i$ между сх. № 1 и другими сх. №№ 2...6 приведены в табл. 2.

Для всех схем (рис. 3а)-д)) в таблице 3 приведены интервалы бурения для которых расхождения значений собственных чисел между 1-й схемой, наиболее полной и i-ми не превышают 5 % и значения максимальных погрешностей $\Delta \lambda_i$ для соответствующих глубин бурения.

Согласно табл. 3 наименьшую погрешность $^{\Delta\lambda}_1$ имеет схема 2 рис. а), описываемая частотным уравнением (12), в которой жесткость забоя $^{\mathcal{C}_2}$ принимается весьма большой и массой долот $^{M}_2$ можно пренебречь, т.к. они опираются на забой и в расчетной схеме не участвуют.

Таким образом, данную упрощенную схему можно использовать для решения многих динамических задач при определении напряженно-деформированного состояния буровой установки, так как, с одной стороны, она наиболее упрощена, а с другой наиболее полно и реально отражает динамическую модель установки реактивно-турбинного бурения.

Таблица 2. Основные схемы, условные обозначения, расчетные зависимости и значений собственных чисел для различных схем математических моделей буровой установки РТБ

№Номер схемы,	Общий вид схе- мы	Условные обозначения и допущения	Расчетная зависимость для опреде- ления собственных чисел λ _i	Значение λ_i для глубины бурения $l = 300$ м	Разность в значений λ_i между 1-ой и др. схемами, $(\%)$
1	2	3	4	5	6
1	c_1 M_1 M_2 M_2 C_2	$\begin{split} c_1 &= 1,55 \cdot 10^7 \text{ H/m}; \ c_2 &= 1,18 \cdot 10^9 \text{ H/m}; \\ M_1 &= 8,55 \cdot 10^3 \text{ KF}; \ M = 3,0 \cdot 10^4 \text{ KF}; \\ M_2 &= 1,1 \cdot 10^3 \text{ KF}; \ m_1 = 36 \text{ KF}; \\ m_2 &= 308 \text{ KF}; \ F_1 = 4,49 \cdot 10^{-3} \text{ M}^2, \\ F_2 &= 7,22 \cdot 10^{-3} \text{ M}^2, \ l_1 = 501000 \text{ M}, \\ l_2 &= 7,12 \text{ M}, \ \bar{c}_1 = \frac{c_1 \cdot l_1}{EF_1}, \ \bar{c}_2 = \frac{c_2 \cdot l_2}{EF_2}, \\ \xi &= \frac{M}{m_1 l_1}, \ \xi_1 = \frac{M_1}{m_1 l_1}; \ \xi_2 = \frac{M_2}{m_2 l_2}; \\ \lambda &= kl; \ \bar{l} = \frac{l_2}{l_1}, \ \lambda_2 = \lambda_1 \bar{l}; \ \lambda^* = \lambda \bar{l}; \end{split}$	$tg\lambda = \frac{\overline{c}_1 - \lambda (\xi \lambda - \frac{F_2}{F_1} \cdot \frac{\overline{c}_2}{\lambda})}{\lambda + \overline{c}_1(\xi \lambda - \frac{F_2}{F_1} \cdot \frac{\overline{c}_2}{\lambda})}$	λ ₃ = 4,570	-
2		$c_2 = \infty$, $\alpha_1 = 1$	$tg\lambda = \frac{\overline{c}_1 - (\xi_1 + \xi - \frac{F_2}{F_1 \lambda^*})\lambda}{\lambda + (1 + (\xi - \frac{F_2}{F_1 \lambda^*}) \cdot (\overline{c}_1 - \xi_1))}$	$\lambda_1 = 1,843$ $\lambda_2 = 3,606$ $\lambda_3 = 6,483$	0,76 3,47 41,85
	I, m,		$\lambda + (1 + (\xi - \frac{r_2}{F_1 \lambda^*}) \cdot (\overline{C}_1 - \xi)$		

Продолжение табл. 2.

	C ₁	$egin{aligned} rac{F_2}{F_1} = rac{c_2 l_2}{E F_1} = \overline{c}_2 \ _{ m MJM} \ F_2 = F_1 \overline{c}_2 \end{aligned}$	$\overline{C}_1 - (\xi_1 + \xi - \frac{\overline{C}_2}{\lambda^*}) \lambda^2$	λ ₁ = 1,824	0,27
3	l_1 m_1		$tg\lambda = \frac{\lambda}{\lambda + \left(1 + (\xi - \frac{\overline{c}_2}{\lambda^*})(\overline{c}_1 - \xi_1 \lambda^2)\right)}$	λ ₂ = 3,567	2,35
			Λ΄ 1		35,91
4		жесткость турбобура не влияет на ко- лебания системы, т.е. $c_2 = 0$	$\overline{c}_1 - (\xi_1 + \xi) \lambda^2$	$\lambda_1 = 1,624$	11,21
	l , m_1	2	$tg\lambda = \frac{\overline{C}_1 - (\xi_1 + \xi)\lambda^2}{\lambda + (1 + \xi)(\overline{C}_1 - \xi_1\lambda^2)}$	λ ₂ = 3,293	5,51
	M			$\lambda_3 = 6,323$	38,35
5	c,	$M_1 << M$, поэтому полагаем, что $M_1 \approx 0$, т.е. $\xi_1 = 0$	$\overline{c}_1 - \xi \lambda^2$	$\lambda_1 = 2,599$	42,1
	l_{i} $-m$		$tg\lambda = \frac{c_1 - \xi \lambda^2}{\lambda (1 + \xi \overline{c}_1)}$	λ ₂ = 5,323	52,74
	M			λ ₃ = 8,268	80,92
				$\lambda_1 = 3,252$	77,80
6				λ ₂ = 6,34	81,92

Полагаем, что жесткость талевой системы бесконечно большая, т.е. $C_1 = \infty \ .$	$tg\lambda = \frac{1}{\lambda \xi}$	λ ₂ = 9,463	107,06
---	-------------------------------------	------------------------	--------

Таблица 3. Погрешности между 1-й схемой и другими схемами

№ схемы, $\Delta \lambda_i = \Gamma$ лубины бурения, при Значения максимальной погреп				
$\Delta \lambda_{i} = $ $= \lambda_{ic1} - \lambda_{ic2}$	• • •	Значения максимальной погрешности $^{\Delta\lambda}{}_i$ и соответствующей глубины бурения L , м.		
2	3	4		
$\Delta \lambda_1$	-	не превышает 5 % на всей глубине		
Δλ ₂	0233,6	24,03 % на глубине 141,3 м		
$\Delta\lambda_3$	151,1469,4	36,29 % на глубине 272,9 м		
$\Delta\lambda_1$	-	не превышает 5 % на всей глубине		
Δλ ₂	0247,3 м	51,06 % на глубине 100 м		
$\Delta\lambda_3$	135,4430 м	42,6 % на глубине 245,4 м		
$\Delta\lambda_1$	0191,3 и 333,91000 м	14 % на глубине 50 м		
Δλ ₂	0345 м	302,2 % на глубине 50 м		
$\Delta\lambda_3$	0472 м	96,3 % на глубине 50 м		
$\Delta\lambda_1$	на всех глубинах	267,6 % на глубине 50 м		
Δλ ₂	на всех глубинах	146,1 % на глубине 50 м		
$\Delta\lambda_3$	на всех глубинах	503,5 % на глубине 50 м		
$\Delta\lambda_1$	на всех глубинах	273,6 % на глубине 50 м		
Δλ2	на всех глубинах	322,4 % на глубине 50 м		
Δλ3	на всех глубинах	183,6 % на глубине 50 м		
	$\begin{array}{c} 2 \\ \Delta\lambda_1 \\ \Delta\lambda_2 \\ \Delta\lambda_3 \\ \Delta\lambda_1 \\ \Delta\lambda_2 \\ \Delta\lambda_2 \\ \Delta\lambda_3 \\ \Delta\lambda_1 \\ \Delta\lambda_2 \\ \Delta\lambda_3 \\ \Delta\lambda_1 \\ \Delta\lambda_2 \\ \Delta\lambda_3 \\ \Delta\lambda_2 \\ \Delta\lambda_3 \\ \Delta\lambda_1 \\ \Delta\lambda_2 \\ \Delta\lambda_3 \\ \Delta\lambda_2 \\ \Delta\lambda_3 \\ \Delta\lambda_3 \\ \Delta\lambda_1 \\ \Delta\lambda_2 \\ \Delta\lambda_3 \\ \Delta\lambda_2 \\ \Delta\lambda_3 \\ \Delta\lambda_3 \\ \Delta\lambda_1 \\ \Delta\lambda_2 \\ \Delta\lambda_3 \\ \Delta\lambda_2 \\ \Delta\lambda_3 \\ \Delta\lambda_3 \\ \Delta\lambda_3 \\ \Delta\lambda_3 \\ \Delta\lambda_4 \\ \Delta\lambda_4 \\ \Delta\lambda_5 $	$=\lambda_{ic1}-\lambda_{ic2}$ которых погрешность $\Delta\lambda_i$ превышает 5 % 2 3 $\Delta\lambda_1$ - $\Delta\lambda_2$ 0233,6 $\Delta\lambda_3$ 151,1469,4 $\Delta\lambda_1$ - $\Delta\lambda_2$ 0247,3 м $\Delta\lambda_1$ 3 135,4430 м $\Delta\lambda_1$ 0191,3 и 333,91000 м $\Delta\lambda_2$ 0345 м $\Delta\lambda_3$ 1 4 всех глубинах $\Delta\lambda_1$ на всех глубинах		

Список литературы: 1. Петтик Ю.В. Моделирование и расчет продольных колебаний высокочастотного технологического оборудования// Прогрессивные технологии и системы машиностроения: Международный сб. научн. трудов. - Донецк: ДонГТУ. − 1998. - Вып.5. -С. 170-177. 2. Улитин Г.М., Петтик Ю.В. Ударные процессы в буровых установках.// Вибрация в технике и технологиях. - 2000. - №1 - С. 70-74. 3. Шевченко Ф.Л. Механика упругих деформируемых систем. Ч.З. Динамическое воздействие нагрузок. Учебное пособие. - Киев: УМК ВО, 1993. - 186 с. 4. Шевченко Ф.Л. Динамика упругих стержневых систем: Учебное пособие. - Донецк: ООО «Лебедь», 1999. - 268 с. 5. Шевченко Ф.Л., Улитин Г.М. Динамические задачи стержневых систем. - Киев: ИСИО, 1995. - 99 с. 6. Жиленко Н.П., Краснощек А.А. Справочное пособие по реактивно-турбинному бурению. - М , Недра, 1987. - 309с. 7. Жемочкин Б.Н. Теория упругости. - М.: Госстройиздат, 1957. - 256 с.

ОБҐРУНТУВАННЯ ВИБОРУ ДИНАМІЧНОЇ МАТЕМАТИЧНОЇ МОДЕЛІ КОЛИВАНЬ УСТАНОВОК РЕАКТИВНО-ТУРБІННОГО БУРІННЯ Пєттік Ю.В.

Зроблено обгрунтування вибору вигляду динамічної моделі коливань для розрахунку власних чисел бурових установок реактивно турбінного буріння.

ОБОСНОВАНИЕ ВЫБОРА ДИНАМИЧЕСКОЙ МАТЕМАТИЧЕСКОЙ МОДЕЛИ КОЛЕБАНИЙ УСТАНОВОК РЕАКТИВНО-ТУРБИННОГО БУРЕНИЯ

Петтик Ю.В.

Выполнено обоснование выбора вида динамической модели колебаний для расчета собственных чисел буровых установок реактивно-турбинного бурения.

SUBSTANTIATION OF A CHOICE OF DYNAMIC MATHEMATICAL MODEL OF FLUCTUATIONS OF CHISEL INSTALLATIONS OF REACTION-TURBO RIGS Pettik J.V.

Substantiation of a choice of dynamic model of fluctuations for calculation of own numbers of chisel installations of reaction-turbo rigs is performed.

Рецензент: д.т.н, проф. Онищенко В.П.