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THE MATHEMATICAL MODEL FOR THE MOVEMENT OF 
TRANSPORTED MATERIAL AT THE FLOW TURN  

The main aim in the investigation of aerodisperse flow of solids is the 
mathematical description of their regularities depending on the characteristics of the 
particles and conditions of flow formation. Lack of knowledge about tension generation 
mechanisms being the difficult function of particles velocity puts obstacles in the way 
of working out of the adequate analytical description of regularities in pneumotransport 
flows. Besides, the high heterogeneity in solid phase concentration is typical for high 
velocities of pneumatic conveying of solids. All these problems worsen the 
experimental and analytical investigations of pneumatic conveying processes. 

Additional difficulties arise at the mathematical modelling of pneumatic 
transportation in bend. This is due to the fact that centrifugal force influences the 
transported material in the perpendicular direction at the flow turn. The centrifugal force 
is many times more than the material weight [1]. The forces which cause hovering of 
the particles during the horizontal movement are in many times less than the centrifugal 
force. Therefore the overwhelming majority of fractions does not come back from an 
external bend wall into the flow of transporting gas, but settles on it.  

The present bend calculation methods are based on the empirical dependences 
used for uniform flows [2, 3, 4, 5, 6]. Naturally, the calculations by these techniques 
give considerable errors because of ignoring the difficult physical nature of two-
component flows transportation [7, 8]. Besides, in many scientific publications on this 
theme [4, 7, 9], the offer about the invariability of the cross-section area of deposited 
solids was accepted. However, the last experimental investigations with a transparent 
bend exposed the other structure of particles flow in a pipeline bend (Fig. 1) [10, 8]. 



According to these sources the sliding speed of particles settled in the bend 
gradually decreases, and the thickness of a layer increases on the exit from the bend. 
This process is illustrated in Fig. 1 and 2.  

  

Fig. 1. Aerodisperse flow in a bend [10] Fig. 2. The scheme of an aerodisperse flow in  
a bend according to [8] 

The purpose of the work is to create the mathematical theory for the calculation 
of kinematic characteristics of the transported mass in a pipeline bend and to get 
formulas for the solids speed uT on an exit from a bend. 

The given mathematical model of the solids movement at the flow turn is based 
on the suggestion that the all material settles at the origin of a bend and changes the 
speed during the movement. It allows passing the law of mass change along a motion 
pass in a bend in the following form: 
    0 1m m m    ,  (1) 

where φ – the polar angle counted from the beginning of flow turn for a square-

wave bend; 0m  – mass of material at the origin of a bend 0
2


   ;  1m   – the 

function defined further and considered the change of material mass along a motion 
path. 

It is necessary to consider that the friction force operates against the movement 
of material: 
 T f N  ,  (2) 

where N – constraint force;  f – the coefficient of material friction against a bend 
wall. 



The scheme for the interaction of forces influencing material fractions in a bend 
is presented further. Gravitation G, centrifugal force C, constraint force N and friction 
force T belong to these forces (Fig. 3). 

 
Fig. 3. The calculated scheme of a bend 

THE ANALYSIS OF FORCE INTERACTION IN THE LAYER OF 
THE DEPOSITED PARTICLES 

Let us project the vector equation of particles motion of the transported material 
of variable mass on an axis of Euler’s coordinate system (Fig. 3). We have  
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We determine reaction N from the second equation of system (3) and substitute 
in the first one. Further, taking into account the connection between a turning angle φ 
and velocity uT, we can reduce system (3) to the differential equation relative to 
function uT (φ): 
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For the correct solution of this equation it is necessary to define dependence (1) 
and from physical reasons to determine function  1m  . 

Let us assume that the area occupied with a material at movement along a bend, 
occupies area D in bend longitudinal section represented in Fig. 4. 



 
Fig. 4. The scheme of the deposited particles layer in a bend 

Let us allow polar system of coordinates ( )   with a pole O and a polar axis l. 

In this system of coordinates the equation of an external rim of bend AmB looks like 
R  , and the equation of internal border of area D – curve AnC – ,R a     

where  max2h
a 


. (5) 

We find by means of double integral the area of domain AnОA defined by 
current value of an angle φ. Then required area S(φ) of a domain AmnA will be equal 

    
2

3
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
    .  (6) 

Designating through ρ mass of a layer of the transported material, corresponding 
to the fixed value S(φ), we will define the change of its mass at a motion along a bend – 
function  1m   in formula (1): 

    2
1

1
( ) 3

6
m S a R a         .  (7) 

For parameter definition a in formula (8) we will consider that relative volume 
CV of a material in a bend, as well as concentration of a flow, is defined as the 
proportion: 
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where  maxTV h  – the volume occupied with a material at a motion in a bend of 

the pipeline; TV  – volume of the whole bend representing a part of a toroidal cover. 



If it is possible to define the connection ( )T maxV h  equation (8) can be considered 

as the equation for the definition maxh , and consequently the parameter a. 

THE DETERMINATION OF THE MATERIAL VOLUME IN A BEND  

Let us consider the fourth part of a toroidal cover and assume that the material at 
transportation along a bend occupies a part of its volume ABCNA (Fig. 5). 

 
Fig. 5. To the determination of the deposited particles volume in a pipeline bend 

Let us allow the Cartesian system of coordinates OXYZ where the section equation 
tore in a plane x0y will register as 

   22 2x y R r r    . 

Then the surface equation tore as surfaces of rotation round axis 0х, will be [11]: 

   22 2 2 2x z y R r r     . 

Let us designate through D a longitudinal projection of an investigated surface to 
a plane y0z (it is represented in Fig. 4). Then the required volume will be 
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We pass in a plane y0z to polar coordinates ( , )   and use tabular integrals [12]. 

With their help find primitive function in internal integral and after some 
transformations we will receive  
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The first and the third items under integral in formula (9) are integrated 
elementary, for integration of the fourth item we apply an integration method in parts, 
and to the second – trigonometrical substitution. Collecting the received results, we will 
receive definitively: 
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Thus, taking into account this expression and the expression for a quarter of 
tоrus volume with characteristics r and R [11]  
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it is possible to consider the transcendental equation (8) completely formed for the 

definition of maxh . It  should be  mentioned that  the  roots  of  this equation  are  to  be  
searched in  limits 0< hmax< r as experimental data show.  

 THE ANALYSIS OF THE TRANSPORTED MATERIAL VELOCITY IN 
A PIPELINE BEND 

The problem of this subsection is to define the velocity of the material particles 
for any value of a polar angle φ (Fig. 3). For this purpose we have a problem of Koshi: 
differential equation (4) with the initial condition 

 0 0T Tu u  ,  (11) 

where иТО – initial velocity of the transported flow particles on the entrance of a 
bend. 

We substitute the law of mass change (1) considering dependence (7) in 
differential equation (4) and reduce it to the nonlinear differential equation of Bernoulli 
[13] of the following form  
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We find the solution of equation (12) in a standard way  
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To find a primitive function in formula (15) it is necessary to determine 
denominator roots of the subintegral function, i.е. to solve the equation 
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Discriminant expressions are calculated [14, 15] 
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and inequality 
2 3

R Q  is obtained. So, equation (16) has one real root and two 

complex conjugate ones, evaluated using Cardano formulae (16) 
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The subintegral expression in (15) is decomposed into a sum of simple fractions 
and the method of undetermined coefficients is used. After integration we obtain the 

function  P   in explicit form 
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Thus, we have the equation for the function  u   in (14)  

    2 2 2 cos sin ,f Pdu
e gR f

d
      


 

solved elementary. After determining the integration constant from the starting 
condition(11) we obtain the desired dependence of the velocity on the angle φ as 
following 
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If we put in (17), (18)  0 1; 0m m m   , then expression (17) becomes 
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that is identical to the formula, obtained in [9] for the constancy of the material mass in 
the bend, located in vertical plane of «horizontal-vertical» type. 



COMPARISON OF THE PRESSURE LOSS CALCULATION RESULTS IN 
THE PIPELINE BEND USING DIFFERENT METHODS 

According to the given methods comparative calculations of the pressure loss in 
the pipeline bend with the rotation of the pipe at an angle φ = 90о, bending radius R = 
0,3 m, pipe diameter d = 0,05 m, located in the vertical plane with the material 
consumption 0,8; 1,7 и 3,3 kg/s are carried out. The velocity of the bulk material иТК at 
the outlet of the bend fot the case of uniform distribution of deposited particles is 
detemined by formulae (17) and (18). 

According to the calculation results we have graphs presented in Fig. 6. Here the 
solid line indicates the experimental graphs obtained on the experimental stand of the 
Automobile and Highway Institute of the Donetsk State Technical University. 

 
Fig. 6. Graphs of the pressure loss dependence in the pipeline bend 

According to the graphs calculation accuracy by the method providing for the 
mass change of particles layer along the bend greatly improves the calculation accuracy 
on a simplified version.  

CONCLUSION 

1. It is shown that in the bend of the pneumotransport pipeline solids by 
centrifugal force are deposited on the wall of the bend, forming a layer of transported 
material, thickness of which is not constant, but changes along the bend according to the 
law, depending on the particle size, density of carrying and transported medium, 
bending radius. 

2. A new analytical model of the bend, taking into account the variable height 
of deposited particles layer is developed; a nonlinear differential equation of the layer 



motion is composed; the law of the velocity change of the particle layer motion and the 
change of its specific gravity along the bend is obtained. 

3. A design procedure of the pressure loss in the pipeline bend, consistent with 
the accepted analytical model is developed. The comparison of calculated and 
experimental data shows that their divergence does not exceed 15 %. 
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АНАЛИТИЧЕСКОЕ ИССЛЕДОВАНИЕ ИЗМЕНЕНИЯ СКОРОСТИ 
ТРАНСПОРТИРУЕМОГО МАТЕРИАЛА В КОЛЕНЕ ТРУБОПРОВОДА 

Михаил Чальцев, Леонид Вовк 

Аннотация. Обосновывается и предлагается математическая модель движения аэродисперсного 
потока в колене трубопровода. Получено решение этой модели при условиях, приближенных к 
реальным. Приведено сравнение результатов, полученных экспериментально, по данной модели и для 
некоторых упрощающих гипотез. 

Ключевые слова: пневматическое транспортирование сыпучих материалов, скорость потока, 
дифференциальные уравнения 

 


