Міністерство освіти і науки України Донецький національний технічний університет

Кафедра "Вища математика" ім. В.В. Пака

Збірник науково-методичних робіт

Випуск 6

Донецьк -2009

Рекомендовано до друку Радою Донецького Національного технічного Університету Протокол № 5 від 19.06.2009 р.

Збірник науково-методичних робіт. - Вип. 6. - Донецьк: ДонНТУ, 2009. - 231 с.

В сборнике представлены результаты научно-методических исследований по вопросам совершенствования методики преподавания высшей математики во ВТУЗах и внедрения новых методов обучения.

Рассматриваются также различные направления использования математических методов к решению инженерных задач, а именно, задач механики твёрдого тела, физики магнитных явлений и др.

Издание рассчитано на преподавателей, аспирантов и широкий круг научных, инженерно-технических работников различных отраслей промышленности.

Редакційна колегія: проф. Улітін Г.М. - редактор, проф. Петренко О.Д., проф. Лесіна М.Ю, проф. Косолапов Ю.Ф., доц. Євсеєва О. Г., Локтіонов І.К. (ДонНТУ).

Адреса редакційної колегії: Україна, 83050, м. Донецьк, вул. Артема, 96, ДонНТУ, 3-й учбовий корпус, кафедра "Вища математика", тел. (062) 3010901.

© Донецький Національний технічний університет, 2009 р.

Численные методы интегрирования обыкновенных дифференциальных уравнений – общий подход

Локтионов И.К., Гусар Г.А.

Донецкий национальный технический университет

Рекуррентные формулы некоторых численных методов интегрирования обыкновенных дифференциальных уравнений получены с использованием квадратурных формул прямоугольников, трапеций и парабол.

Известно, что одним из эффективных способов вывода рабочих формул методов Рунге-Кутта решения задачи Коши для обыкновенных дифференциальных уравнений основан на геометрических построениях [1]. Однако, более естественным, а поэтому, возможно, более удобным для восприятия представляется подход, основанный на применении квадратурных формул.

Методы Рунге-Кутта обладают рядом характерных свойств:

- 1) они не требуют вычисления производных от f(x, y), а требуют только вычисления значений f(x, y);
- 2) согласуются с рядом Тейлора вплоть до членов порядка h^p , где степень p различна для различных методов и называется порядком метода;
- 3) значение y_{m+1} вычисляется по найденным значениям за некоторое число действий по одним и тем же формулам;
- 4) позволяют выполнять расчёты с переменным шагом;
- 5) все они (кроме метода Эйлера) имеют хорошую точность.

Недостатком всех методов является систематическое накопление ошибок — чем дальше значение x от начальной точки x_0 , тем больше отклонение приближённого решения от точного.

Предлагаемый подход к изложению численных методов решения задачи Коши заключается в следующем.

Пусть требуется найти частное решение дифференциального уравнения (ДУ)

$$y' = f(x, y), \tag{1}$$

удовлетворяющее начальному условию $y_0=y(x_0)$ в точках $x_{m+1}=x_m+m\cdot h$, $m=\overline{0,n-1}$, h>0. ДУ (1) может быть преобразовано к интегральному уравнению

$$y(x) = y_0 + \int_{x_0}^{x} f(x, y(x)) dx,$$
 (2)

с помощью которого определяются значения искомой функции в точках x_m и

$$y(x_m) = y_m = y_0 + \int_{x_0}^{x_m} f(x, y(x)) dx,$$
 (3)

$$y(x_{m+1}) = y_{m+1} = y_0 + \int_{x_0}^{x_{m+1}} f(x, y(x)) dx.$$
 (4)

Вычитание из (4) (3) приводит к основному уравнению

$$y_{m+1} = y_m + \int_{x_m}^{x_{m+1}} f(x, y(x)) dx,$$
 (5)

связывающему значения y_m и y_{m+1} в двух соседних точках.

Численные методы решения задачи Коши отличаются друг от друга способами приближённого вычисления интеграла в правой части соотношения (5).

Предположим, что точка (x_m, y_m) на интегральной кривой известна.

1) **Метод Эйлера** (метод ломаных). Если подынтегральную функцию f(x, y) в (5) заменить её значением в точке (x_m, y_m) , то интеграл будет равен

$$\int_{x_m}^{x_{m+1}} f(x, y) dx = f(x_m, y_m) \int_{x_m}^{x_{m+1}} dx = h \cdot f(x_m, y_m).$$

Такая замена равносильна применению формулы левых прямоугольников при вычислении определённого интеграла (точка x_m - левая граница отрезка $[x_m;x_{m+1}]$). В результате из (5) получаем вычислительную схему Рунге-Кутта первого порядка — метод Эйлера, согласующийся с рядом Тейлора вплоть до членов $\propto h$

$$y_{m+1}^{\mathcal{I}} = y_m + h \cdot f(x_m, y_m). \tag{6}$$

Погрешность метода на каждом шаге $\propto h^2$, однако глобальная погрешность, в силу систематического накопления ошибок на каждом шаге $\propto h$.

Рассмотренный метод можно усовершенствовать по крайней мере двумя способами, которые связаны с формулой трапеций и формулой средних прямоугольников.

2) **Метода Эйлера-Коши**. Одним из методов Рунге-Кутта второго порядка с коррекцией по средней производной является так называемый исправленный метод Эйлера, который в литературе встречается также под названием второго улучшенного метода Эйлера и метода трапеций.

К вычислительной схеме метода приводит интерполирование подынтегральной функции f(x,y) на отрезке $\left[x_m;x_{m+1}\right]$ многочленом первой степени, т.е. представление её в виде

$$f(x,y) = f(x_m, y_m) + \frac{f(x_{m+1}, y_{m+1}^{9}) - f(x_m, y_m)}{h} (x - x_m), \tag{7}$$

где значение $y_{m+1}^{\mathfrak{I}}$ вычисляется методом Эйлера (6).

Вычислив интеграл в правой части (5) с функцией (7) получим

$$y_{m+1}^{3.-K.} = y_m + \frac{h}{2} \cdot \left(f(x_m, y_m) + f(x_{m+1}, y_{m+1}^{3.}) \right), \tag{8}$$

где
$$y_{m+1}^{3} = y_m + h \cdot f(x_m, y_m)$$
.

Подчеркнём, что интерполяция многочленом (7) геометрически приводит к замене интеграла в правой части (5) площадью трапеции.

3) Модифицированный метод Эйлера. Несколько более точное значение y_{m+1} искомой функции в точке x_{m+1} может быть получено с помощью модифицированного метода Эйлера (метод Рунге-Кутта второго порядка с коррекцией в средней точке, первый улучшенный метод Эйлера, метод срединных точек).

В основе метода лежит интерполирование функции f(x,y) на отрезке $\left[x_m;x_{m+1}\right]$ её значением в средней точке $x_{m+1/2}=x_m+h/2$,

 $y_{m+1/2} = y_m + \frac{h}{2} f(x_m, y_m)$. Положив, как это делается в методе средних прямоугольников, подынтегральную функцию в правой части равной её значению в средней точке отрезка $[x_m; x_{m+1}]$

$$f(x,y) = f(x_{m+1/2}, y_{m+1/2}), (9)$$

после интегрирования (5) приходим к следующей вычислительной схеме

$$y_{m+1}^{M.3.} = y_m + h \cdot f\left(x_m + \frac{h}{2}, y_m + \frac{h}{2}f(x_m, y_m)\right). \tag{10}$$

Поскольку погрешность квадратурной формулы средних прямоугольников вдвое меньше погрешности формулы трапеций, то значение искомой функции y_{m+1} , вычисляемое по формуле (10) точнее, чем соответствующее значение, определяемое методом Эйлера-Коши (8).

Отметим, что метод Эйлера-Коши (8) и модифицированный метод Эйлера (10) согласуются с рядом Тейлора вплоть до членов $\propto h^2$.

4) Значения неизвестной функции y_{m+1} можно ещё более уточнить, если подынтегральную функцию f(x,y) представить интерполяционным многочленом Ньютона. Учитывая значения f(x,y) в точках (x_m,y_m) , $(x_{m+1/2},y_{m+1/2})$, (x_{m+1},y_{m+1}) , т.е. на концах отрезка $[x_m;x_{m+1}]$ и в его середине, получаем многочлен второй степени по x:

$$f(x,y) = f(x_m, y_m) + \frac{2\Delta f_m}{h} (x - x_m) + \frac{2\Delta^2 f_m}{h^2} (x - x_m) (x - x_{m+1/2}), \tag{11}$$

где $\Delta f_m = f(x_{m+1/2}, y_{m+1/2}) - f(x_m, y_m) = f_{m+1/2} - f_m$,

$$\Delta f_{m+1} = f(x_{m+1}, y_{m+1}) - f(x_{m+1/2}, y_{m+1/2}) = f_{m+1} - f_{m+1/2},$$

$$\Delta^2 f_m = \Delta f_{m+1} - \Delta f_m = f_{m+1} - 2f_{m+1/2} + f_m.$$

Вычисление интеграла (5) с функцией (11) приводит к формуле

$$y_{m+1} = y_m + \Delta y_m = y_m + \frac{h}{6} \left(f_m + 4f_{m+1/2} + f_{m+1} \right), \tag{12}$$

которая носит название канонической формулы парабол (Симпсона). Она имеет более высокую точность по сравнению с квадратурными формулами трапеций и средних прямоугольников и позволяет построить несколько вычислительных схем для нахождения y_{m+1} по заданному y_m . Вычислительные схемы будуг отличаться одна от другой способами определения значений $f_{m+1/2}$ и f_m , входящих в формулу парабол. Общей отличительной от «традиционных» методов — метода Эйлера и его модификаций, чертой всех способов вычисления y_{m+1} должна быть более высокая точность.

Рассмотрим несколько возможных вариантов этих схем.

- 1. Наиболее простой представляется следующая: методом Эйлера устанавливаются значения $y_{m+1/2}^{\mathcal{O}}=y_m+\frac{h}{2}f\left(x_m,y_m\right),\ y_{m+1}^{\mathcal{O}}=y_m+hf\left(x_m,y_m\right),\$ а после этого вычисляются значения функции $f_{m+1/2}=f\left(x_{m+1/2},y_{m+1/2}^{\mathcal{O}}\right),$ $f_{m+1}=f\left(x_{m+1},y_{m+1}^{\mathcal{O}}\right)$ и $\Delta y_m=\frac{h}{6}\left(f_m+4f_{m+1/2}+f_{m+1}\right).$
- 2. Этот вариант отличается от предыдущего уменьшением шага

вдвое
$$y_{m+1/2}^{\mathcal{S}}=y_m+\frac{h}{2}f\left(x_m,y_m\right),\quad y_{m+1}=y_{m+1/2}^{\mathcal{S}}+\frac{h}{2}f\left(x_{m+1/2},y_{m+1/2}^{\mathcal{S}}\right),$$
 $f_{m+1/2}=f\left(x_{m+1/2},y_{m+1/2}^{\mathcal{S}}\right),\quad f_{m+1}=f\left(x_{m+1},y_{m+1}\right),\quad \Delta y_m=\frac{h}{6}\left(f_m+4f_{m+1/2}+f_{m+1}\right).$

3. Комбинация метода парабол и метода Эйлера-Коши

$$y_{m+1/2}^{\Im} = y_m + \frac{h}{2} f(x_m, y_m), \quad y_{m+1}^{\Im} = y_m + h f(x_m, y_m), \quad f_{m+1/2} = f(x_{m+1/2}, y_{m+1/2}^{\Im}).$$

$$y_{m+1}^{\Im - K} = y_m + \frac{h}{2} (f(x_m, y_m) + f(x_{m+1}, y_{m+1}^{\Im})), \qquad f_{m+1} = f(x_{m+1}, y_{m+1}^{\Im - K}).$$

$$\Delta y_m = \frac{h}{6} (f_m + 4 f_{m+1/2} + f_{m+1}).$$

4. Комбинация метода парабол и модифицированного метода Эйлера $y_{m+1/2}^{\mathcal{G}} = y_m + \frac{h}{2} f \big(x_m, y_m \big), \qquad f_{m+1/2} = f \big(x_{m+1/2}, y_{m+1/2}^{\mathcal{G}} \big),$ $y_{m+1}^{M,\mathcal{G}} = y_m + h f \big(x_{m+1/2}, y_{m+1/2}^{\mathcal{G}} \big), \qquad f_{m+1} = f \big(x_{m+1}, y_{m+1}^{M,\mathcal{G}} \big),$ $\Delta y_m = \frac{h}{\epsilon} \Big(f_m + 4 f_{m+1/2} + f_{m+1} \Big).$

Точность в этом случае несколько выше, чем в случае 3.

5. Вычислительная схема имеет меньшую погрешность по сравнению с вариантами 1-4 и реализуется следующими рекуррентными формулами:

$$\begin{aligned} y_{m+1/2}^{\mathcal{I}} &= y_m + \frac{h}{2} f(x_m, y_m), & f_{m+1/2} &= f(x_{m+1/2}, y_{m+1/2}^{\mathcal{I}}), \\ y_{m+1/2}^* &= y_m + \frac{h}{2} f(x_{m+1/2}, y_{m+1/2}^{\mathcal{I}}), & f_{m+1/2}^* &= f(x_{m+1/2}, y_{m+1/2}^*), \end{aligned}$$

$$\begin{split} \overline{f_{m+1/2}} &= \frac{1}{2} \Big(f_{m+1/2} + f_{m+1/2}^* \Big), & f_{m+1} &= f \Big(x_{m+1}, y_m + h \overline{f_{m+1/2}} \Big), \\ \Delta y_m &= \frac{h}{6} \Big(f_m + 4 \overline{f_{m+1/2}} + f_{m+1} \Big). \end{split}$$

6. Метод Рунге-Кутта четвёртого порядка, наиболее распространённый на практике, может быть получен из предыдущего заменой $\overline{f_{m+1/2}}$ при вычислении

$$\begin{split} f_{m+1} &\text{ на } f_{m+1/2}^* \colon \quad y_{m+1/2}^{\mathfrak{I}} = y_m + \frac{h}{2} \, f \big(x_m, y_m \big), \qquad f_{m+1/2} = f \Big(x_{m+1/2}, y_{m+1/2}^{\mathfrak{I}} \Big), \\ y_{m+1/2}^* &= y_m + \frac{h}{2} \, f \Big(x_{m+1/2}, y_{m+1/2}^{\mathfrak{I}} \Big), \qquad f_{m+1/2}^* = f \Big(x_{m+1/2}, y_{m+1/2}^* \Big), \\ \overline{f_{m+1/2}} &= \frac{1}{2} \Big(f_{m+1/2} + f_{m+1/2}^* \Big), \qquad f_{m+1} = f \Big(x_{m+1}, y_m + h f_{m+1/2}^* \Big), \\ \Delta y_m &= \frac{h}{6} \Big(f_m + 4 \, \overline{f_{m+1/2}} + f_{m+1} \Big). \end{split}$$

Для иллюстрации возможностей представленных вариантов рассмотрим решение задачи Коши для ДУ y' = 2y/x + x, y(1) = 0 с помощью каждого из них (очевидно, что эта задача допускает точное решение). Результаты численного решения задачи Коши представлены в двух таблицах. Сравнение результатов, полученных «традиционными» методами (таблица 1) с результатами комбинированных методов (таблица 2) позволяет сделать вывод, что совместное использование формулы парабол и «традиционных» методов приводит к более точным значениям искомой функции (варианты 1, 3, 4 в таблице 2).

Таблица 1.

x_m	$y_m^{\mathfrak{I}}$	$y_m^{\ImK.}$	$y_m^{M.\Im.}$	$y_m^{PK.}$	Точное решение
1	0	0	0	0	0
1,2	0,2	0,253333	0,256364	0,26247	0,262543
1,4	0,506667	0,638095	0,645315	0,659336	0,659486
1,6	0,931429	1,166803	1,179315	1,202977	1,203209
1,8	1,484286	1,850265	1,869134	1,904107	1,904429
2,0	2,174127	2,697993	2,724253	2,772117	2,772589

Таблица 2.

x_m	$y_m^{\mathcal{I}}\{1\}$	$y_m^{\mathfrak{I}K.}\{3\}$	$y_m^{M.9.}\{4\}$	$y_m^{K.P.K.} \{5\}$	Точное решение
1	0	0	0	0	0
1,2	0,255354	0,258316	0,258485	0,262185	0,262543
1,4	0,642907	0,64981	0,650187	0,658715	0,659486
1,6	1,175141	1,18692	1,187541	1,201972	1,203209
1,8	1,862838	1,880399	1,881299	1,902671	1,904429
2,0	2,715489	2,739718	2,740928	2,770257	2,772589

Литература

^{1.} Численные методы анализа - Б.П. Демидович, И.А. Марон, Э.З. Шувалова. - М., 1962 г.

СОДЕРЖАНИЕ

1. Улитин Г.М., Мироненко Л.П. Геометрический подход к
выводу канонических уравнений линий второго порядка3
2. Алєксєєва І.В., Гайдей В.О., Диховичний О.О., Коновалова Н.Р.,
Федорова Л.Б. «Елементи програмованого навчання в
дистанційному курсі «Математичний аналіз»
3. Власенко К.В. Метод тоново-фазичної мотивації в інтенсивних
технологіях навчання вищої математики14
4. Гурьева Н.А., Голубева О.В. Аффинные связности на
многообразии с почти двойной структурой20
5. Ехилевский С.Г., Голубева О.В., Гурьева Н.А. Вероятностная
интерпретация решения уравнения диффузии26
6. О. Г. Евсеєва. Розробка тестових завдань з вищої математики
на основі методів інженерії знань
7. <i>В.В. Малашенко</i> , <i>Т.И. Малашенко</i> Моделирование
динамического скольжения дислокаций в гидростатически сжатых
материалах 40
8. Локтионов И.К., Гусар Г.А. Численные методы
интегрирования обыкновенных дифференциальных уравнений –
общий подход
9. <i>Руссиян С. А. Головаха Д. В.</i> Вероятностная модель
несанкционированного срабатывания аппаратуры защитного
отключения при коммутации ответвления сети шахты52
10. Косолапов Ю.Ф., Шейка Е. О параллельном изложении
функций одной и многих переменных
11. <i>Петренко А.Д.</i> О программе курса высшей математики
в техническом университете
12. <i>Терехов С.В.</i> Синергетика и менеджмент
13. Евсеева Е.Г., Прокопенко Н.А. Разработка дистанционного
курса «Математика для экономистов» на базе платформы
MOODLE
14. <i>Никулін О.В.</i> , <i>Наконечна Т.В.</i> Моделювання і математичні
моделі наук та навчальних дисциплін як синергетичних систем79
15. <i>Мироненко Л.П.</i> Соглашение о суммировании в линейной
алгебре84

16. <i>Н.Д.Орлова</i> , <i>Е.Ю.Орлова</i> . Рейтинговый контроль учебного
процесса по дисциплине «ВЫСШАЯ МАТЕМАТИКА» курсантов
OHMA90
17. <i>Ехилевская В. Г.</i> Информационные технологии в
формировании преемственности обучения математике в средней и
высшей школе
18. Лавріненко Н.М. До питання формування змісту математичної
підготовки студентів
19. Варущик Н.П. Рівнева диференціація навчання математики в
умовах профільної у фізико-математичних класах ліцею103
20. Улицкая Н.Ю. Проблемы составления заданий по теме
«ПРЕДЕЛЫ»111
21. Мироненко Л.П., Прокопенко Н.А. Интегральная форма теоре-
мы Лагранжа и её применение к определенному интегралу115
22. Варварецька Г.А., Клімова Т.І., Сапронова Т.М. Необхідність
актуалізації проблеми паралельного викладу теми
«Диференціювання функції однієї та багатьох змінних» на
практичних заняттях з вищої математики в ОНМА123
23. <i>Щетініна О. К.</i> Математичні методи прогнозування129
24. Гребьонкіна О.С. Розвиток творчого мислення в процесі
навчання вищій математиці
25. Пелашенко А.В., Прокопенко Н.А. Анализ чувствительности
задач линейного программирования
26. <i>Мироненко Л.П.</i> , <i>Бабенко А.И</i> . Единственность разложения
рациональной дроби на сумму простейших дробей
27. <i>Шульга Н. В.</i> Задачі міжпредметного характеру як засіб
реалізації міжпредметних зв'язків у навчанні математики студентів
вищих навчальних закладів
28. <i>Паниотов Ю.Н., Перетолчина Г.Б.</i> Некоторые примеры к
теме: «СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН»
29. <i>Азарова Н.В.</i> Применение численных методов к решению
некоторых задач теории резания
30. Данилюк Г.И., Ковалев И.Н., Кононыхин Г.А. Устойчивость
равномерных вращений кинетического накопителя энергии в
случае его несимметрии
31. <i>М.Е. Лесина</i> , <i>Н.Ф. Гоголева</i> . Применение дифференциальной
геометрии для построения аксоидов в естественном базисе171

32. <i>Евсеева Е. Г., Савин А. И.</i> Разработка системы задач, направленных на формирование предметных умений, на основе моделирования обучаемого				
33. <i>Ехилевский С.Г., Голубева О.В., Пяткин Д.В.</i> Метод моментов в моделировании динамической сорбционной активности				
34. <i>Кобець А.С., Дем'яненко А.Г. ,Клюшник Д.В.</i> Сучасна вища інженерна освіта в Україні — деякі тенденції, проблеми та перспективи				
35. Данилюк Г.І., Ковальов І.М., Кононихін Г.А. Деякі апріорні оцінки обмежених узагальнених розв/язків нелінійних параболічних рівнянь				
36. <i>Буркіна Н.В.</i> , <i>Ігнатова Л.Б.</i> , <i>Николайчук Т.І.</i> Проектування				
змісту дистанційного навчання математики207				
37. <i>Малєєв В.Б., Журба В.В., Журба В.Вас.</i> ТЗН як інструмент				
управління ємністю інформації в викладанні фундаментальних				
дисциплін в технічному виші				
38. <i>Гончаров А.Н.</i> Метод Гаусса и обратная матрица				
39. <i>Астахов В.М.</i> , <i>Буланов Г.С.</i> Комплект заданий				
графического характера, ориентированных на развитие у				
студентов понятия «ОПОРНОЕ РЕШЕНИЕ» в задаче линейного				
программирования				
40. Александрова О.В., Ковалев И.Н. Моделирование				
симметричных серпантин				
41. <i>Косилова</i> $E.\Phi$. Некоторые актуальные аспекты				
математической подготовки будущих экономистов				
42. Vladimir Kochergin MAGNETO-OPTICAL EFFECTS IN				
METAL-DIELECTRIC NANOCOMPOSITES227				